

Trk C Polyclonal Antibody

Catalog # AP73348

Specification

Trk C Polyclonal Antibody - Product Information

Application WB
Primary Accession Q16288
Reactivity Human
Host Rabbit
Clonality Polyclonal

Trk C Polyclonal Antibody - Additional Information

Gene ID 4916

Other Names

NTRK3; TRKC; NT-3 growth factor receptor; GP145-TrkC; Trk-C; Neurotrophic tyrosine kinase receptor type 3; TrkC tyrosine kinase

Dilution

WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/20000. Not yet tested in other applications.

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions

-20°C

Trk C Polyclonal Antibody - Protein Information

Name NTRK3

Synonyms TRKC

Function

Receptor tyrosine kinase involved in nervous system and probably heart development. Upon binding of its ligand NTF3/neurotrophin-3, NTRK3 autophosphorylates and activates different signaling pathways, including the phosphatidylinositol 3-kinase/AKT and the MAPK pathways, that control cell survival and differentiation.

Cellular Location

Membrane; Single-pass type I membrane protein.

Tissue Location

Widely expressed but mainly in nervous tissue. Isoform 2 is expressed at higher levels in adult brain than in fetal brain

Tel: 858.875.1900 Fax: 858.875.1999

Trk C Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- <u>Immunofluorescence</u>
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Trk C Polyclonal Antibody - Images

Trk C Polyclonal Antibody - Background

Receptor tyrosine kinase involved in nervous system and probably heart development. Upon binding of its ligand NTF3/neurotrophin-3, NTRK3 autophosphorylates and activates different signaling pathways, including the phosphatidylinositol 3-kinase/AKT and the MAPK pathways, that control cell survival and differentiation.