

FLT3 (CD135) Antibody (C-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7644b

Specification

FLT3 (CD135) Antibody (C-term) - Product Information

Application	WB, IHC-P,E
Primary Accession	<u>P36888</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Antigen Region	951-982

FLT3 (CD135) Antibody (C-term) - Additional Information

Gene ID 2322

Other Names

Receptor-type tyrosine-protein kinase FLT3, FL cytokine receptor, Fetal liver kinase-2, FLK-2, Fms-like tyrosine kinase 3, FLT-3, Stem cell tyrosine kinase 1, STK-1, CD135, FLT3, CD135, FLK2, STK1

Target/Specificity

This FLT3 (CD135) antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 951-982 amino acids from the C-terminal region of human FLT3 (CD135).

Dilution WB~~1:1000 IHC-P~~1:50~100 E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions FLT3 (CD135) Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

FLT3 (CD135) Antibody (C-term) - Protein Information

Name FLT3

Synonyms CD135, FLK2, STK1

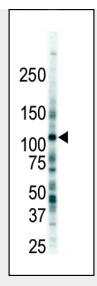
Function Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine FLT3LG and regulates differentiation, proliferation and survival of hematopoietic progenitor cells and of dendritic cells. Promotes phosphorylation of SHC1 and AKT1, and activation of the downstream effector MTOR. Promotes activation of RAS signaling and phosphorylation of downstream kinases, including MAPK1/ERK2 and/or MAPK3/ERK1. Promotes phosphorylation of FES, FER, PTPN6/SHP, PTPN11/SHP-2, PLCG1, and STAT5A and/or STAT5B. Activation of wild-type FLT3 causes only marginal activation of STAT5A or STAT5B. Mutations that cause constitutive kinase activity promote cell proliferation and resistance to apoptosis via the activation of multiple signaling pathways.

Cellular Location

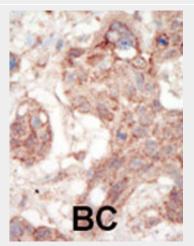
Membrane; Single-pass type I membrane protein. Endoplasmic reticulum lumen. Note=Constitutively activated mutant forms with internal tandem duplications are less efficiently transported to the cell surface and a significant proportion is retained in an immature form in the endoplasmic reticulum lumen. The activated kinase is rapidly targeted for degradation

Tissue Location

Detected in bone marrow, in hematopoietic stem cells, in myeloid progenitor cells and in granulocyte/macrophage progenitor cells (at protein level). Detected in bone marrow, liver, thymus, spleen and lymph node, and at low levels in kidney and pancreas. Highly expressed in T-cell leukemia


FLT3 (CD135) Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

FLT3 (CD135) Antibody (C-term) - Images

Western blot analysis of anti-FLT3 Pab (Cat. #AP7644b) in 293 cell lysate. FLT3 (arrow) was detected using purified Pab. Secondary HRP-anti-rabbit was used for signal visualization with chemiluminescence.

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by AEC staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

FLT3 (CD135) Antibody (C-term) - Background

Protein kinases are enzymes that transfer a phosphate group from a phosphate donor, generally the g phosphate of ATP, onto an acceptor amino acid in a substrate protein. By this basic mechanism, protein kinases mediate most of the signal transduction in eukaryotic cells, regulating cellular metabolism, transcription, cell cycle progression, cytoskeletal rearrangement and cell movement, apoptosis, and differentiation. With more than 500 gene products, the protein kinase family is one of the largest families of proteins in eukaryotes. The family has been classified in 8 major groups based on sequence comparison of their tyrosine (PTK) or serine/threonine (STK) kinase catalytic domains. The tyrosine kinase (TK) group is mainly involved in the regulation of cell-cell interactions such as differentiation, adhesion, motility and death. There are currently about 90 TK genes sequenced, 58 are of receptor protein TK (e.g. EGFR, EPH, FGFR, PDGFR, TRK, and VEGFR families), and 32 of cytosolic TK (e.g. ABL, FAK, JAK, and SRC families).

FLT3 (CD135) Antibody (C-term) - References

Minami, Y., et al., Blood 102(8):2969-2975 (2003). Zwaan, C.M., et al., Blood 102(7):2387-2394 (2003). Sitnicka, E., et al., Blood 102(3):881-886 (2003). Galimberti, S., et al., Anticancer Res. 23(4):3419-3426 (2003). Kottaridis, P.D., et al., Leuk. Lymphoma 44(6):905-913 (2003).