

DDR1 Antibody (C-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7660B

Specification

DDR1 Antibody (C-term) - Product Information

Application WB, IHC-P,E
Primary Accession Q08345

Reactivity Human, Mouse

Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Antigen Region 873-904

DDR1 Antibody (C-term) - Additional Information

Gene ID 780

Other Names

Epithelial discoidin domain-containing receptor 1, Epithelial discoidin domain receptor 1, CD167 antigen-like family member A, Cell adhesion kinase, Discoidin receptor tyrosine kinase, HGK2, Mammary carcinoma kinase 10, MCK-10, Protein-tyrosine kinase 3A, Protein-tyrosine kinase RTK-6, TRK E, Tyrosine kinase DDR, Tyrosine-protein kinase CAK, CD167a, DDR1, CAK, EDDR1, NEP, NTRK4, PTK3A, RTK6, TRKE

Target/Specificity

This DDR1 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 873-904 amino acids from the C-terminal region of human DDR1.

Dilution

WB~~1:1000 IHC-P~~1:50~100

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

DDR1 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

DDR1 Antibody (C-term) - Protein Information

Name DDR1

Synonyms CAK, EDDR1, NEP, NTRK4, PTK3A, RTK6, TRK

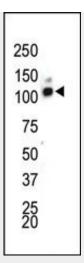
Function Tyrosine kinase that functions as a cell surface receptor for fibrillar collagen and regulates cell attachment to the extracellular matrix, remodeling of the extracellular matrix, cell migration, differentiation, survival and cell proliferation. Collagen binding triggers a signaling pathway that involves SRC and leads to the activation of MAP kinases. Regulates remodeling of the extracellular matrix by up-regulation of the matrix metalloproteinases MMP2, MMP7 and MMP9, and thereby facilitates cell migration and wound healing. Required for normal blastocyst implantation during pregnancy, for normal mammary gland differentiation and normal lactation. Required for normal ear morphology and normal hearing (By similarity). Promotes smooth muscle cell migration, and thereby contributes to arterial wound healing. Also plays a role in tumor cell invasion. Phosphorylates PTPN11.

Cellular Location

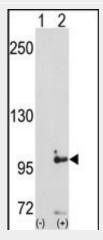
[Isoform 1]: Cell membrane; Single-pass type I membrane protein [Isoform 3]: Secreted.

Tissue Location

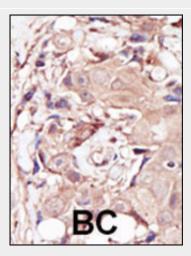
Detected in T-47D, MDA-MB-175 and HBL-100 breast carcinoma cells, A-431 epidermoid carcinoma cells, SW48 and SNU-C2B colon carcinoma cells and Hs 294T melanoma cells (at protein level) Expressed at low levels in most adult tissues and is highest in the brain, lung, placenta and kidney. Lower levels of expression are detected in melanocytes, heart, liver, skeletal muscle and pancreas Abundant in breast carcinoma cell lines. In the colonic mucosa, expressed in epithelia but not in the connective tissue of the lamina propria. In the thyroid gland, expressed in the epithelium of the thyroid follicles. In pancreas, expressed in the islets of Langerhans cells, but not in the surrounding epithelial cells of the exocrine pancreas. In kidney, expressed in the epithelia of the distal tubules Not expressed in connective tissue, endothelial cells, adipose tissue, muscle cells or cells of hematopoietic origin


DDR1 Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

DDR1 Antibody (C-term) - Images



Western blot analysis of anti-MCK10 Pab (Cat. #AP7660a) in mouse lung lysate. MCK10 (Arrow) was detected using purified Pab. Secondary HRP-anti-rabbit was used for signal visualization with chemiluminescence.

Western blot analysis of DDR1 (arrow) using MCK10 Antibody (C-term) (Cat.#AP7660b). 293 cell lysates (2 ug/lane) either nontransfected (Lane 1) or transiently transfected with the DDR1 gene (Lane 2) (Origene Technologies).

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by AEC staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

DDR1 Antibody (C-term) - Background

Receptor tyrosine kinases (RTKs) play a key role in the communication of cells with their microenvironment. These molecules are involved in the regulation of cell growth, differentiation and metabolism. MCK10 is a RTK that is widely expressed in normal and transformed epithelial cells and is activated by various types of collagen. This protein belongs to a subfamily of tyrosine kinase receptors with a homology region to the Dictyostelium discoideum protein discoidin I in their extracellular domain. Its autophosphorylation is achieved by all collagens so far tested (type I to type VI). In situ studies and Northern-blot analysis showed that expression of this encoded protein is restricted to epithelial cells, particularly in the kidney, lung, gastrointestinal tract, and brain. In addition, this protein is significantly over-expressed in several human tumors from breast, ovarian, esophageal, and pediatric brain. The gene is located on chromosome 6p21.3 in proximity to several HLA class I genes.

DDR1 Antibody (C-term) - References

Vogel, W., et al., Mol. Cell 1(1):13-23 (1997). Playford, M.P., et al., Genome Res. 6(7):620-627 (1996). Perez, J.L., et al., Oncogene 12(7):1469-1477 (1996). Valent, A., et al., Hum. Genet. 98(1):12-15 (1996). Edelhoff, S., et al., Genomics 25(1):309-311 (1995).