

RAF1 Antibody (N-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7816a

Specification

RAF1 Antibody (N-term) - Product Information

Application	FC, IF, IHC-P, WB,E
Primary Accession	<u>P04049</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	73052
Antigen Region	1-30

RAF1 Antibody (N-term) - Additional Information

Gene ID 5894

Other Names

RAF proto-oncogene serine/threonine-protein kinase, Proto-oncogene c-RAF, cRaf, Raf-1, RAF1, RAF

Target/Specificity

This RAF1 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 1-30 amino acids from the N-terminal region of human RAF1.

Dilution $FC \sim 1:10 \sim 50$ $IF \sim 1:10 \sim 50$ $IHC - P \sim 1:50 \sim 100$ $WB \sim -1:1000$ $E \sim -$ Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

RAF1 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures.

RAF1 Antibody (N-term) - Protein Information

Name RAF1 (HGNC:9829)

Synonyms RAF

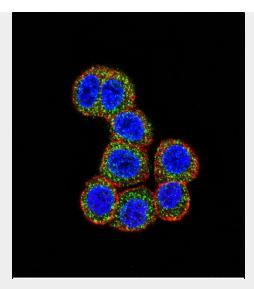
Function Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal- regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation.

Cellular Location

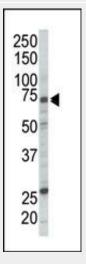
Cytoplasm. Cell membrane. Mitochondrion. Nucleus. Note=Colocalizes with RGS14 and BRAF in both the cytoplasm and membranes. Phosphorylation at Ser-259 impairs its membrane accumulation. Recruited to the cell membrane by the active Ras protein Phosphorylation at Ser-338 and Ser-339 by PAK1 is required for its mitochondrial localization. Retinoic acid-induced Ser-621 phosphorylated form of RAF1 is predominantly localized at the nucleus

Tissue Location

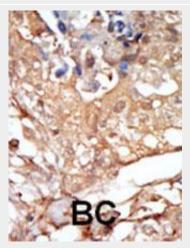
In skeletal muscle, isoform 1 is more abundant than isoform 2.


RAF1 Antibody (N-term) - Protocols

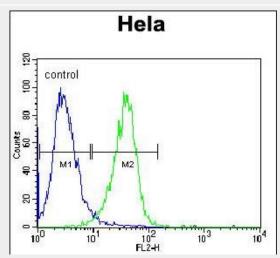
Provided below are standard protocols that you may find useful for product applications.


- <u>Western Blot</u>
- <u>Blocking Peptides</u>
- <u>Dot Blot</u>
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

RAF1 Antibody (N-term) - Images



Confocal immunofluorescent analysis of RAF1 Antibody (N-term)(Cat#AP7816a) with Hela cell followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG (green).Actin filaments have been labeled with Alexa Fluor 555 phalloidin (red).DAPI was used to stain the cell nuclear (blue).


Western blot analysis of anti-RAF1 Pab (Cat. #AP7816a) in Jurkat cell lysate. RAF1 (arrow) was detected using purified Pab. Secondary HRP-anti-rabbit was used for signal visualization with chemiluminescence.

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody,

which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

RAF1 Antibody (N-term) (Cat. #AP7816a) flow cytometric analysis of Hela cells (right histogram) compared to a negative control cell (left histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

RAF1 Antibody (N-term) - Background

RAF1 is a MAP kinase kinase kinase (MAP3K) which functions downstream of the Ras family of membrane associated GTPases to which it binds directly. Once activated, RAF1 can phosphorylate to activate the dual specificity protein kinases MEK1 and MEK2 which in turn phosphorylate to activate the serine/threonine specific protein kinases ERK1 and ERK2. Activated ERKs are pleiotropic effectors of cell physiology and play an important role in the control of gene expression involved in the cell division cycle, apoptosis, cell differentiation and cell migration.

RAF1 Antibody (N-term) - References

Chong, H., et al., J. Biol. Chem. 278(38):36269-36276 (2003). Lee, M., et al., Cancer Lett. 193(1):57-64 (2003). Alavi, A., et al., Science 301(5629):94-96 (2003). Fringer, J., et al., J. Biol. Chem. 278(23):20612-20617 (2003). Oehrl, W., et al., J. Biol. Chem. 278(20):17819-17826 (2003).