

PCK2 Antibody (N-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP8094a

Specification

PCK2 Antibody (N-term) - Product Information

Application IF, WB, IHC-P,E

Primary Accession
Reactivity
Human
Host
Clonality
Polyclonal
Isotype
Calculated MW
Antigen Region

O16822
Human
Rabbit
Polyclonal
Rabbit IgG
24-54

PCK2 Antibody (N-term) - Additional Information

Gene ID 5106

Other Names

Phosphoenolpyruvate carboxykinase [GTP], mitochondrial, PEPCK-M, PCK2, PEPCK2

Target/Specificity

This PCK2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 24-54 amino acids from the N-terminal region of human PCK2.

Dilution

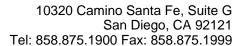
IF~~1:10~50 WB~~1:1000 IHC-P~~1:50~100

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage


Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

PCK2 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures.

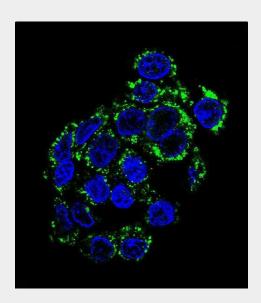
PCK2 Antibody (N-term) - Protein Information

Name PCK2 (HGNC:8725)

Synonyms PEPCK2

Function Mitochondrial phosphoenolpyruvate carboxykinase that catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle (PubMed: 28955899). Can play an active role in glyceroneogenesis and gluconeogenesis (PubMed: 28955899).

Cellular Location Mitochondrion.

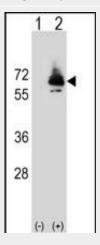

Tissue Location Widely expressed..

PCK2 Antibody (N-term) - Protocols

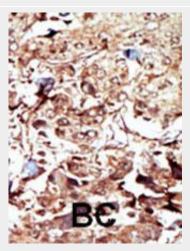
Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

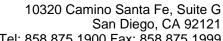
PCK2 Antibody (N-term) - Images



Confocal immunofluorescent analysis of PCK2 Antibody (N-term)(Cat#AP8094a) with HepG2 cell followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG (green).DAPI was used to stain the cell nuclear (blue).



Western blot analysis of anti-PCK2 Antibody (N-term) (Cat.#AP8094a) in HepG2 cell line lysates (35ug/lane). PCK2 (arrow) was detected using the purified Pab.



Western blot analysis of PCK2 (arrow) using rabbit polyclonal PCK2 Antibody (Q39) (Cat. #AP8094a). 293 cell lysates (2 ug/lane) either nontransfected (Lane 1) or transiently transfected (Lane 2) with the PCK2 gene.

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by AEC staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

PCK2 Antibody (N-term) - Background

Tel: 858.875.1900 Fax: 858.875.1999

This gene encodes a member of the phosphoenolpyruvate carboxykinase (GTP) family. The protein is a mitochondrial enzyme that catalyzes the conversion of oxaloacetate to phosphoenolpyruvate in the presence of GTP. A cytosolic form encoded by a different gene has also been characterized and is the key enzyme of gluconeogenesis in the liver. The encoded protein may serve a similar function, although it is constitutively expressed and not modulated by hormones such as glucagon and insulin that regulate the cytosolic form. Alternatively spliced transcript variants have been described.

PCK2 Antibody (N-term) - References

Strausberg, R.L., et al., Proc. Natl. Acad. Sci. U.S.A. 99(26):16899-16903 (2002). Modaressi, S., et al., Biochem. J. 333 (Pt 2), 359-366 (1998). Modaressi, S., et al., Biochem. J. 315 (Pt 3), 807-814 (1996).