

ACCN1 Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP9213c

Specification

ACCN1 Antibody (Center) - Product Information

Application WB, IHC-P, FC,E

Primary Accession <u>Q16515</u>

Other Accession <u>062962</u>, <u>0925H0</u>

Reactivity
Predicted
Mouse, Rat
Host
Clonality
Polyclonal
Isotype
Calculated MW
Antigen Region
Human
Mouse, Rat
Rabbit
Rabbit
Cloral
Rabbit IgG
Toronal
Rabbit Igg
To

ACCN1 Antibody (Center) - Additional Information

Gene ID 40

Other Names

Acid-sensing ion channel 2, ASIC2, Amiloride-sensitive brain sodium channel, Amiloride-sensitive cation channel 1, neuronal, Amiloride-sensitive cation channel neuronal 1, Brain sodium channel 1, BNC1, BNaC1, Mammalian degenerin homolog, ASIC2, ACCN, ACCN1, BNAC1, MDEG

Target/Specificity

This ACCN1 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 120-148 amino acids from the Central region of human ACCN1.

Dilution

WB~~1:1000 IHC-P~~1:50~100 FC~~1:10~50

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

ACCN1 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

ACCN1 Antibody (Center) - Protein Information

Name ASIC2

Synonyms ACCN, ACCN1, BNAC1, MDEG

Function Cation channel with high affinity for sodium, which is gated by extracellular protons and inhibited by the diuretic amiloride. Also permeable for Li(+) and K(+). Generates a biphasic current with a fast inactivating and a slow sustained phase. Heteromeric channel assembly seems to modulate.

Cellular Location

Cell membrane; Multi-pass membrane protein. Note=Localized at the plasma membrane of neurons, in the soma and punctated peripheral processes.

Tissue Location

Brain and spinal cord. Isoform 1 is also detected in testis, liver, colon and ovary.

ACCN1 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

ACCN1 Antibody (Center) - Images

Western blot analysis of ACCN1 Antibody (Center) (Cat. #AP9213c) in NCI-H460 cell line lysates (35ug/lane). ACCN1 (arrow) was detected using the purified Pab.

Formalin-fixed and paraffin-embedded human brain tissue reacted with ACCN1 Antibody (Center), which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated.

ACCN1 Antibody (Center) (Cat. #AP9213c) flow cytometric analysis of WiDr cells (right histogram) compared to a negative control cell (left histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

ACCN1 Antibody (Center) - Background

ACCN1 encodes a member of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily. The members of this family are amiloride-sensitive sodium channels that contain intracellular N and C termini, 2 hydrophobic transmembrane regions, and a large extracellular loop, which has many cysteine residues with conserved spacing. The member encoded by this protein may play a role in neurotransmission. In addition, a heteromeric association between this member and ACCN3 (variant 1) has been observed to co-assemble into proton-gated channels sensitive to gadolinium.

ACCN1 Antibody (Center) - References

Bashari, E., et.al., Am. J. Physiol., Cell Physiol. 296 (2), C372-C384 (2009) Chai, S., et.al., J. Biol. Chem. 282 (31), 22668-22677 (2007)