

GABRA4 Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP9298c

Specification

GABRA4 Antibody (Center) - Product Information

Application WB, IHC-P, FC,E

Primary Accession
Reactivity
Human
Host
Clonality
Isotype
Antigen Region

P48169
Human
Rabbit
Polyclonal
Rabbit IgG
350-377

GABRA4 Antibody (Center) - Additional Information

Gene ID 2557

Other Names

Gamma-aminobutyric acid receptor subunit alpha-4, GABA(A) receptor subunit alpha-4, GABRA4

Target/Specificity

This GABRA4 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 350-377 amino acids from the Central region of human GABRA4.

Dilution

WB~~1:1000 IHC-P~~N/A FC~~1:10~50

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

GABRA4 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

GABRA4 Antibody (Center) - Protein Information

Name GABRA4 (<u>HGNC:4078</u>)

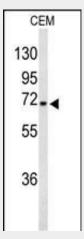
Function Alpha subunit of the heteropentameric ligand-gated chloride channel gated by

gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:35355020). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (PubMed:35355020). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:35355020). GABAARs containing alpha-4 are predominantly extrasynaptic, contributing to tonic inhibition in dentate granule cells and thalamic relay neurons (By similarity). Extrasynaptic alpha-4-containing GABAARs control levels of excitability and network activity (By similarity). GABAAR containing alpha-4-beta-3- delta subunits can simultaneously bind GABA and histamine where histamine binds at the interface of two neighboring beta subunits, which may be involved in the regulation of sleep and wakefulness (PubMed:35355020).

Cellular Location

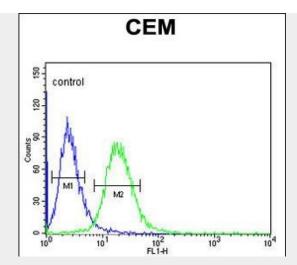
Cell membrane {ECO:0000250|UniProtKB:Q9D6F4}; Multi-pass membrane protein {ECO:0000269|PubMed:35355020, ECO:0007744|PDB:7QN5}. Postsynaptic cell membrane; Multi-pass membrane protein {ECO:0000269|PubMed:35355020, ECO:0007744|PDB:7QN5}

Tissue Location


Expressed in the brain. {ECO:0000250|UniProtKB:Q9D6F4}

GABRA4 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

GABRA4 Antibody (Center) - Images

Western blot analysis of GABRA4 Antibody (Center) (Cat. #AP9298c) in CEM cell line lysates (35ug/lane). GABRA4 (arrow) was detected using the purified Pab.

GABRA4 Antibody (Center) (Cat. #AP9298c) flow cytometric analysis of CEM cells (right histogram) compared to a negative control cell (left histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

GABRA4 Antibody (Center) - Background

GABRA4 is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor.

GABRA4 Antibody (Center) - References

Guilmatre, A., et.al., Arch. Gen. Psychiatry 66 (9), 947-956 (2009) Maldonado-Aviles, J.G., et.al., Am J Psychiatry 166 (4), 450-459 (2009) Agrawal, A., et.al., Addiction 104 (3), 471-477 (2009)