SUPV3L1 Antibody (N-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP9772A ## **Specification** ## SUPV3L1 Antibody (N-term) - Product Information Application WB, FC, IHC-P,E Primary Accession <u>Q8IYB8</u> Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Isotype Rabbit IgG Antigen Region 93-121 ## SUPV3L1 Antibody (N-term) - Additional Information #### **Gene ID 6832** ### **Other Names** ATP-dependent RNA helicase SUPV3L1, mitochondrial, Suppressor of var1 3-like protein 1, SUV3-like protein 1, SUPV3L1, SUV3 # **Target/Specificity** This SUPV3L1 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 93-121 amino acids from the N-terminal region of human SUPV3L1. ### **Dilution** $WB \sim 1:1000$ $FC \sim 1:10 \sim 50$ $IHC-P \sim 1:50 \sim 100$ $E \sim Use at an assay dependent concentration.$ #### **Format** Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. #### Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. ### **Precautions** SUPV3L1 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures. # SUPV3L1 Antibody (N-term) - Protein Information ### Name SUPV3L1 ## **Synonyms** SUV3 **Function** Major helicase player in mitochondrial RNA metabolism. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Involved in the degradation of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules (PubMed:29967381). ATPase and ATP-dependent multisubstrate helicase, able to unwind double-stranded (ds) DNA and RNA, and RNA/DNA heteroduplexes in the 5'-to-3' direction. Plays a role in the RNA surveillance system in mitochondria; regulates the stability of mature mRNAs, the removal of aberrantly formed mRNAs and the rapid degradation of non coding processing intermediates. Also implicated in recombination and chromatin maintenance pathways. May protect cells from apoptosis. Associates with mitochondrial DNA. #### **Cellular Location** Nucleus. Mitochondrion matrix Mitochondrion matrix, mitochondrion nucleoid ### **Tissue Location** Broadly expressed.. ### SUPV3L1 Antibody (N-term) - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture ## SUPV3L1 Antibody (N-term) - Images Western blot analysis of SUPV3L1 Antibody (N-term) (Cat. #AP9772a) in K562 cell line lysates (35ug/lane). SUPV3L1 (arrow) was detected using the purified Pab. Western blot analysis of lysates from SW620, PC-3 cell line, mouse kidney, rat kidney tissue lysate (from left to right), using SUPV3L1 Antibody (N-term)(Cat. #AP9772a). AP9772a was diluted at 1:1000 at each lane. A goat anti-rabbit IgG H&L(HRP) at 1:10000 dilution was used as the secondary antibody. Lysates at 20ug per lane. SUPV3L1 Antibody (N-term) (Cat. #AP9772a) IHC analysis in formalin fixed and paraffin embedded prostate carcinoma followed by peroxidase conjugation of the secondary antibody and DAB staining. This data demonstrates the use of the SUPV3L1 Antibody (N-term) for immunohistochemistry. Clinical relevance has not been evaluated. SUPV3L1 Antibody (N-term) (Cat. #AP9772a) flow cytometric analysis of K562 cells (right histogram) compared to a negative control cell (left histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis. # SUPV3L1 Antibody (N-term) - Background SUV3L1 is an ATPase and DNA/RNA helicase able to unwind DNA/DNA, DNA/RNA and RNA/RNA duplexes in the 5'-3' direction. It may protect cells from apoptosis. # SUPV3L1 Antibody (N-term) - References Szczesny, R.J., et al. Nucleic Acids Res. 38(1):279-298(2010) Wang, D.D., et al. J. Biol. Chem. 284(31):20812-20821(2009) Khidr, L., et al. J. Biol. Chem. 283(40):27064-27073(2008) Bogenhagen, D.F., et al. J. Biol. Chem. 283(6):3665-3675(2008) Pereira, M., et al. Mech. Ageing Dev. 128 (11-12), 609-617 (2007) Shu, Z., et al. Biochemistry 43(16):4781-4790(2004)