

CD160 Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP9869c

Specification

CD160 Antibody (Center) - Product Information

Application	WB,E
Primary Accession	<u>095971</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	19810
Antigen Region	56-82

CD160 Antibody (Center) - Additional Information

Gene ID 11126

Other Names CD160 antigen, Natural killer cell receptor BY55, CD160, CD160, BY55

Target/Specificity

This CD160 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 56-82 amino acids from the Central region of human CD160.

Dilution WB~~1:1000 E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions CD160 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

CD160 Antibody (Center) - Protein Information

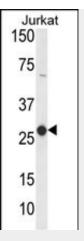
Name CD160 {ECO:0000303|PubMed:16809620, ECO:0000312|HGNC:HGNC:17013}

Function [CD160 antigen]: Receptor on immune cells capable to deliver stimulatory or inhibitory signals that regulate cell activation and differentiation. Exists as a GPI-anchored and as a

transmembrane form, each likely initiating distinct signaling pathways via phosphoinositol 3-kinase in activated NK cells and via LCK and CD247/CD3 zeta chain in activated T cells (PubMed:11978774, PubMed:17307798, PubMed:19109136). Receptor for both classical and non-classical MHC class I molecules (PubMed: 12486241, PubMed: 9973372). In the context of acute viral infection, recognizes HLA-C and triggers NK cell cytotoxic activity, likely playing a role in anti-viral innate immune response (PubMed:<u>12486241</u>). On CD8+ T cells, binds HLA-A2-B2M in complex with a viral peptide and provides a costimulatory signal to activated/memory T cells (PubMed:<u>9973372</u>). Upon persistent antigen stimulation, such as occurs during chronic viral infection, may progressively inhibit TCR signaling in memory CD8+ T cells, contributing to T cell exhaustion (PubMed: 25255144). On endothelial cells, recognizes HLA-G and controls angiogenesis in immune privileged sites (PubMed: 16809620). Receptor or ligand for TNF superfamily member TNFRSF14, participating in bidirectional cell-cell contact signaling between antigen presenting cells and lymphocytes. Upon ligation of TNFRSF14, provides stimulatory signal to NK cells enhancing IFNG production and anti-tumor immune response (By similarity). On activated CD4+ T cells, interacts with TNFRSF14 and down-regulates CD28 costimulatory signaling, restricting memory and alloantigen-specific immune response (PubMed: 18193050). In the context of bacterial infection, acts as a ligand for TNFRSF14 on epithelial cells, triggering the production of antimicrobial proteins and pro-inflammatory cytokines (By similarity).

Cellular Location

[CD160 antigen]: Cell membrane; Lipid-anchor, GPI-anchor


Tissue Location

Expression is restricted to functional NK and cytotoxic T lymphocytes. Expressed in viral-specific effector memory and terminally differentiated effector memory CD8+ T cells. Expressed in memory and activated CD4+ T cell subsets (at protein level) (PubMed:11978774, PubMed:18193050, PubMed:25255144, PubMed:9743336) Expressed at high levels in intraepithelial lymphocytes (at protein level) (PubMed:9743336). Expressed in both alpha-beta and gamma-delta CD8+ T cell subsets (at protein level) (PubMed:11978774, PubMed:18193050, PubMed:9743336). Expressed in umbilical vein endothelial cells (at protein level) (PubMed:9743336). Expressed in umbilical vein endothelial cells (at protein level) (PubMed:16809620). Expressed in monocytes and at lower levels in B cells (PubMed:23761635). Isoform 3: Expressed exclusively in activated NK cells (at protein level) (PubMed:19109136).

CD160 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>
- CD160 Antibody (Center) Images

Western blot analysis of CD160 Antibody (Center) (Cat. #AP9869c) in Jurkat cell line lysates (35ug/lane). CD160 (arrow) was detected using the purified Pab.

CD160 Antibody (Center) - Background

CD160 is an 27 kDa glycoprotein which was initially identified with the monoclonal antibody BY55. Its expression is tightly associated with peripheral blood NK cells and CD8 T lymphocytes with cytolytic effector activity. The cDNA sequence of CD160 predicts a cysteine-rich, glycosylphosphatidylinositol-anchored protein of 181 amino acids with a single Ig-like domain weakly homologous to KIR2DL4 molecule. CD160 is expressed at the cell surface as a tightly disulfide-linked multimer. RNA blot analysis revealed CD160 mRNAs of 1.5 and 1.6 kb whose expression was highly restricted to circulating NK and T cells, spleen and small intestine. Within NK cells CD160 is expressed by CD56dimCD16+ cells whereas among circulating T cells its expression is mainly restricted to TCRgd bearing cells and to TCRab+CD8brightCD95+CD56+CD28-CD27-cells. In tissues, CD160 is expressed on all intestinal intraepithelial lymphocytes. CD160 shows a broad specificity for binding to both classical and nonclassical MHC class I molecules.

CD160 Antibody (Center) - References

Schmitt, C., et al. Genes Immun. 10(7):616-623(2009) Kolz, M., et al. PLoS Genet. 5 (6), E1000504 (2009) Giustiniani, J., et al. J. Immunol. 182(1):63-71(2009) Cai, G., et al. Nat. Immunol. 9(2):176-185(2008)