

IKK alpha Antibody

Catalog # ASC10061

Specification

IKK alpha Antibody - Product Information

Application
Primary Accession
Other Accession
Reactivity
Host
Clonality
Isotype
Calculated MW

Calculated MW Application Notes WB, ICC, E 015111

AF009225, 1147

Human Rabbit Polyclonal

IgG

87 kDa KDa

IKK alpha antibody can be used for

detection of IKK alpha by Western blot 0.5

μg/mL. An 85 kDa band should be detected. Antibody can also be used for immunocytochemistry starting at 10

μg/mL.

IKK alpha Antibody - Additional Information

Gene ID 1147

Other Names

IKK alpha Antibody: IKK1, IKKA, IKBKA, TCF16, NFKBIKA, IKK-alpha, Inhibitor of nuclear factor kappa-B kinase subunit alpha, Conserved helix-loop-helix ubiquitous kinase, I-kappa-B kinase alpha, conserved helix-loop-helix ubiquitous kinase

Target/Specificity

IKK alpha antibody was raised against a 17 amino acid peptide near the carboxy terminus of human IKK alpha.

- the immunogen is located within amino acids 640 - 690 of IKK alpha.

Reconstitution & Storage

IKK alpha antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

Precautions

IKK alpha Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

IKK alpha Antibody - Protein Information

Name CHUK

Synonyms IKKA, TCF16

Function

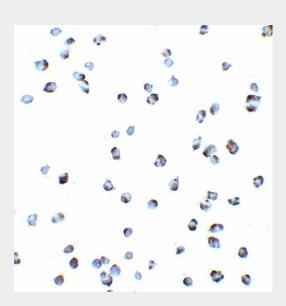
Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated

by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed: 18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed:18626576, PubMed:35952808, PubMed:9244310, PubMed:9252186, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed: 18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed: 21765415). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed:20501937). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed:17434128). Modulates chromatin accessibility at NF-kappa-B- responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed:12789342). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed:15084260). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed: 30217973).

Cellular Location

Cytoplasm. Nucleus Note=Shuttles between the cytoplasm and the nucleus

Tissue Location Widely expressed.


Tel: 858.875.1900 Fax: 858.875.1999

IKK alpha Antibody - Protocols

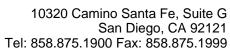
Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

IKK alpha Antibody - Images

Immunocytochemistry of DR3 in Jurkat cells with DR3 antibody at 5 μg/ml.

IKK alpha Antibody - Background


IKK alpha Antibody: Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor and an essential mediator of gene expression during activation of immune and inflammatory responses. NF-kB mediates the expression of a great variety of genes in response to extracellular stimuli including IL-1, TNFα and bacteria product LPS. NF-κB is associated with IκB proteins in the cell cytoplasm, which inhibit NF-kB activity. The long-sought IkB kinase (IKK), which phosphorylates IkB, and mediates IkB degradation and NF-kB activation, was recently identified by several laboratories. IKK is a serine protein kinase, and the IKK complex contains alpha and beta subunits (IKK α and IKK β). IKK α and IKK β interact with each other and both are essential for the NF- κ B activation. IKK α specifically phosphorylates IκB-alpha. IKKα is expressed in a variety of human tissues.

IKK alpha Antibody - References

DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkB kinase that activates the transcription factor NF-kB. Nature 1997;388:548-54

Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M. Identification and characterization of an IKB kinase. Cell 1997;90:373-83

Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkB kinase complex (IKK) contains two kinase subunits, ΙΚΚα and ΙΚΚα, necessary for IκB phosphorylation and NF-κB activation. Cell 1997;91:243-52

Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DY. IkB kinase- β : NF-kB activation and complex formation with IkB kinase- α and NIK. Science 1997;278:866-9