

### **XIAP Antibody**

Catalog # ASC10248

## Specification

## **XIAP Antibody - Product Information**

Application WB, IHC-P, IF, E

Primary Accession <u>P98170</u>

Other Accession NP\_001158, 331
Reactivity Human, Mouse

Host Rabbit
Clonality Polyclonal
Isotype IgG

Calculated MW Predicted: 55 kDa

Observed: 53 kDa KDa

Application Notes XIAP antibody can be used for the

detection of XIAP by Western blot at 0.5 to 2  $\mu$ g/mL. Antibody can also be used for immunohistochemistry starting at 2  $\mu$ g/mL. For immunofluorescence start at 10  $\mu$ g/mL.

### **XIAP Antibody - Additional Information**

Gene ID 331

**Other Names** 

XIAP Antibody: API3, ILP1, MIHA, XLP2, BIRC4, IAP-3, hIAP3, hIAP-3, API3, IAP3, E3 ubiquitin-protein ligase XIAP, Baculoviral IAP repeat-containing protein 4, ILP, X-linked inhibitor of apoptosis

### Target/Specificity

XIAP antibody was raised against a synthetic peptide corresponding to 13 amino acids at the C-terminus of human XIAP.<br/>
The immunogen is located within amino acids 420 - 470 of XIAP.

## **Reconstitution & Storage**

XIAP antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

## **Precautions**

XIAP Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

# **XIAP Antibody - Protein Information**

Name XIAP {ECO:0000303|PubMed:12121969, ECO:0000312|HGNC:HGNC:592}

#### **Function**

Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell



```
proliferation, as well as cell invasion and metastasis (PubMed:<a
href="http://www.uniprot.org/citations/11257230" target=" blank">11257230</a>, PubMed:<a
href="http://www.uniprot.org/citations/11257231" target="_blank">11257231</a>, PubMed:<a
href="http://www.uniprot.org/citations/11447297" target="_blank">11447297</a>, PubMed:<a
href="http://www.uniprot.org/citations/12121969" target="blank">12121969</a>, PubMed:<a
href="http://www.uniprot.org/citations/12620238" target="blank">12620238</a>, PubMed:<a
href="http://www.uniprot.org/citations/17560374" target="blank">17560374</a>, PubMed:<a
href="http://www.uniprot.org/citations/17967870" target="blank">17967870</a>, PubMed:<a
href="http://www.uniprot.org/citations/19473982" target="blank">19473982</a>, PubMed:<a
href="http://www.uniprot.org/citations/20154138" target="_blank">20154138</a>, PubMed:<a href="http://www.uniprot.org/citations/22103349" target="_blank">22103349</a>, PubMed:<a
href="http://www.uniprot.org/citations/9230442" target=" blank">9230442</a>). Acts as a direct
caspase inhibitor (PubMed:<a href="http://www.uniprot.org/citations/11257230"
target=" blank">11257230</a>, PubMed:<a href="http://www.uniprot.org/citations/11257231"
target="blank">11257231</a>, PubMed:<a href="http://www.uniprot.org/citations/12620238"
target="blank">12620238</a>). Directly bind to the active site pocket of CASP3 and CASP7 and
obstructs substrate entry (PubMed:<a href="http://www.uniprot.org/citations/11257230"
target=" blank">11257230</a>, PubMed:<a href="http://www.uniprot.org/citations/11257231"
target=" blank">11257231</a>, PubMed:<a href="http://www.uniprot.org/citations/16352606"
target=" blank">16352606</a>, PubMed:<a href="http://www.uniprot.org/citations/16916640"
target="blank">16916640</a>). Inactivates CASP9 by keeping it in a monomeric, inactive state
(PubMed: <a href="http://www.uniprot.org/citations/12620238" target="blank">12620238</a>).
Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and the target proteins for
its E3 ubiquitin- protein ligase activity include: RIPK1, RIPK2, MAP3K2/MEKK2, DIABLO/SMAC,
AIFM1, CCS, PTEN and BIRC5/survivin (PubMed: <a
href="http://www.uniprot.org/citations/17560374" target=" blank">17560374</a>, PubMed:<a
href="http://www.uniprot.org/citations/17967870" target="blank">17967870</a>, PubMed:<a
href="http://www.uniprot.org/citations/19473982" target="_blank">19473982</a>, PubMed:<a
href="http://www.uniprot.org/citations/20154138" target="blank">20154138</a>, PubMed:<a
href="http://www.uniprot.org/citations/22103349" target="blank">22103349</a>, PubMed:<a
href="http://www.uniprot.org/citations/22607974" target="blank">22607974</a>, PubMed:<a
href="http://www.uniprot.org/citations/29452636" target="_blank">29452636</a>, PubMed:<a href="http://www.uniprot.org/citations/30026309" target="_blank">30026309</a>). Acts as an
important regulator of innate immunity by mediating 'Lys-63'-linked polyubiquitination of RIPK2
downstream of NOD1 and NOD2, thereby transforming RIPK2 into a scaffolding protein for
downstream effectors, ultimately leading to activation of the NF-kappa-B and MAP kinases
signaling (PubMed:<a href="http://www.uniprot.org/citations/19667203"
target="_blank">19667203</a>, PubMed:<a href="http://www.uniprot.org/citations/22607974"
target=" blank">22607974</a>, PubMed:<a href="http://www.uniprot.org/citations/29452636"
target="_blank">29452636</a>, PubMed:<a href="http://www.uniprot.org/citations/30026309"
target="blank">30026309</a>). 'Lys-63'-linked polyubiquitination of RIPK2 also promotes
recruitment of the LUBAC complex to RIPK2 (PubMed: <a
href="http://www.uniprot.org/citations/22607974" target=" blank">22607974</a>, PubMed:<a
href="http://www.uniprot.org/citations/29452636" target="blank">29452636</a>). Regulates
the BMP signaling pathway and the SMAD and MAP3K7/TAK1 dependent pathways leading to
NF-kappa-B and JNK activation (PubMed: <a href="http://www.uniprot.org/citations/17560374"
target=" blank">17560374</a>). Ubiquitination of CCS leads to enhancement of its chaperone
activity toward its physiologic target, SOD1, rather than proteasomal degradation (PubMed:<a
href="http://www.uniprot.org/citations/20154138" target=" blank">20154138</a>).
Ubiquitination of MAP3K2/MEKK2 and AIFM1 does not lead to proteasomal degradation
(PubMed:<a href="http://www.uniprot.org/citations/17967870" target=" blank">17967870</a>,
PubMed:<a href="http://www.uniprot.org/citations/22103349" target=" blank">22103349</a>).
Plays a role in copper homeostasis by ubiquitinating COMMD1 and promoting its proteasomal
degradation (PubMed:<a href="http://www.uniprot.org/citations/14685266"
target=" blank">14685266</a>). Can also function as E3 ubiquitin-protein ligase of the NEDD8
conjugation pathway, targeting effector caspases for neddylation and inactivation (PubMed:<a
href="http://www.uniprot.org/citations/21145488" target=" blank">21145488</a>). Ubiquitinates
```

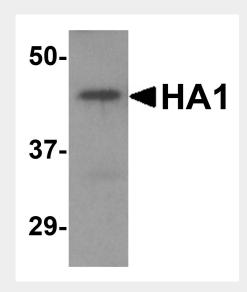


and therefore mediates the proteasomal degradation of BCL2 in response to apoptosis (PubMed:<a href="http://www.uniprot.org/citations/29020630" target="\_blank">29020630</a>). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase- independent manner (PubMed:<a href="http://www.uniprot.org/citations/22095281" target="\_blank">22095281</a>). Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8 (PubMed:<a href="http://www.uniprot.org/citations/22095281" target="\_blank">22095281</a>). Acts as a positive regulator of Wnt signaling and ubiquitinates TLE1, TLE2, TLE3, TLE4 and AES (PubMed:<a href="http://www.uniprot.org/citations/22304967" target="\_blank">22304967</a>). Ubiquitination of TLE3 results in inhibition of its interaction with TCF7L2/TCF4 thereby allowing efficient recruitment and binding of the transcriptional coactivator beta-catenin to TCF7L2/TCF4 that is required to initiate a Wnt-specific transcriptional program (PubMed:<a href="http://www.uniprot.org/citations/22304967" target=" blank">22304967</a>).

#### **Cellular Location**

Cytoplasm. Nucleus. Note=TLE3 promotes its nuclear localization.

### **Tissue Location**


Expressed in colonic crypts (at protein level) (PubMed:30389919). Ubiquitous, except peripheral blood leukocytes (PubMed:8654366).

# **XIAP Antibody - Protocols**

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

### **XIAP Antibody - Images**



Western blot analysis of 5 ng of recombinant HA1 with Avian Influenza Hemagglutinin 2 antibody



at 1 µg/mL.

## **XIAP Antibody - Background**

XIAP Antibody: Apoptosis, or programmed cell death, is related to many diseases, such as cancer. Apoptosis is triggered by a variety of stimuli including members in the TNF family and can be prevented by the inhibitor of apoptosis (IAP) proteins. IAP proteins form a conserved gene family that binds to and inhibits cell death proteases. The X-chromosome linked inhibitor of apoptosis (XIAP) contains 3 baculoviral IAP repeat (BIR) motifs that are essential and sufficient for the binding and inhibition of caspases-3, -7, and -9. Upregulation of XIAP expression can protect cells from apoptosis induced by low level radiation; conversely, decreased XIAP expression by antisense targeting resulted in increased cell death following low level radiation. Two negative regulators, termed XAF-1 and Smac, can bind and inhibit XIAP activity.

### **XIAP Antibody - References**

Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004; 64:7183-90.

Deveraux QL, Takahashi R, Savesan GS, et al. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388:300-4.

Deveraux QL, Leo E, Stennicke HR, et al. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 1999; 18:5242-51. Holcik M, Yeh C, Korneluk RG, et al. Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 2000; 19:4174-7.