

ORAI1 Antibody

Catalog # ASC10502

Specification

ORAI1 Antibody - Product Information

Application Primary Accession Other Accession Reactivity Host

Clonality Isotype

Calculated MW

Application Notes

WB, IHC-P, IF, E 096D31

Q96D31, 84876 Human, Mouse

Rabbit Polyclonal

IaG

Predicted: 33 kDa

Observed: 50 kDa KDa

ORAI1 antibody can be used for detection

of ORAI1 by Western blot at 1 µg/mL.

Antibody can also be used for

immunohistochemistry starting at 10

μg/mL. For immunofluorescence start at 20

μg/mL.

ORAI1 Antibody - Additional Information

Gene ID 84876

Other Names

ORAI1 Antibody: IMD9, ORAT1, CRACM1, TMEM142A, Calcium release-activated calcium channel protein 1, Protein orai-1, ORAI calcium release-activated calcium modulator 1

Target/Specificity

ORAI1 antibody was raised against an 18 amino acid synthetic peptide from near the amino terminus of human ORAI1.

The immunogen is located within the first 50 amino acids of ORAI1.

Reconstitution & Storage

ORAI1 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

Precautions

ORAI1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

ORAI1 Antibody - Protein Information

Name ORAI1 {ECO:0000303|PubMed:16921383, ECO:0000312|HGNC:HGNC:25896}

Function

Pore-forming subunit of two major inward rectifying Ca(2+) channels at the plasma membrane:

Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (Probable) (PubMed: 16645049, PubMed:16733527, PubMed:16807233, PubMed:16921383, PubMed:19249086, PubMed:19706554, PubMed:23307288, PubMed:26956484, PubMed:28219928). Assembles with ORAI2 and ORAI3 to form hexameric CRAC channels that mediate Ca(2+) influx upon depletion of endoplasmic reticulum Ca(2+) store and channel activation by Ca(2+) sensor STIM1, a process known as store-operated Ca(2+) entry (SOCE). Various pore subunit combinations may account for distinct CRAC channel spatiotemporal and cell-type specific dynamics. ORAI1 mainly contributes to the generation of Ca(2+) plateaus involved in sustained Ca(2+) entry and is dispensable for cytosolic Ca(2+) oscillations, whereas ORAI2 and ORAI3 generate oscillatory patterns. CRAC channels assemble in Ca(2+) signaling microdomains where Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT transcription factors recruited to ORAI1 via AKAP5. Activates NFATC2/NFAT1 and NFATC3/NFAT4-mediated transcriptional responses. CRAC channels are the main pathway for Ca(2+) influx in T cells and promote the immune response to pathogens by activating NFAT-dependent cytokine and chemokine transcription (PubMed: 16582901, PubMed:17442569, PubMed:19182790, PubMed:20354224, PubMed:22641696, PubMed:26221052, PubMed:32415068, PubMed:33941685). Assembles with ORAI3 to form channels that mediate store-independent Ca(2+) influx in response to inflammatory metabolites arachidonate or its derivative leukotriene C4, termed ARC and LRC channels respectively (PubMed: 19622606, PubMed:32415068). Plays a prominent role in Ca(2+) influx at the basolateral membrane of mammary epithelial cells independently of the Ca(2+) content of endoplasmic reticulum or Golgi stores. May mediate transepithelial transport of large quantities of Ca(2+) for milk secretion (By similarity) (PubMed:20887894).

Cellular Location

Cell membrane; Multi-pass membrane protein. Basolateral cell membrane {ECO:0000250|UniProtKB:Q8BWG9}; Multi-pass membrane protein. Note=Upon store depletion, colocalizes with STIM1 in membrane punctae at ER-PM junctions (PubMed:19182790, PubMed:19249086, PubMed:26221052, PubMed:27185316) [Isoform beta]: Cell membrane

Tissue Location

Expressed in naive CD4 and CD8 T cells (at protein level) (PubMed:26956484). Expressed at similar levels in naive and effector T helper cells (PubMed:20354224)

ORAI1 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Western Blot

- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

ORAI1 Antibody - Images

Western blot analysis of TEM4 in Jurkat cell lysate with TEM4 antibody at (A) 0.5 and (B) 1 µg/mL.

ORAI1 Antibody - Background

ORAI1 Antibody: Antigen stimulation of immune cells triggers Ca++ entry through Ca++ release-activated Ca++ (CRAC) channels. ORAI1 is a recently identified four-transmembrane spanning protein that is an essential component of CRAC. A missense mutation in this protein in humans is the cause of one form of hereditary severe combined immune deficiency (SCID) which results in ablated T-cell Ca++ entry. It has been suggested that ORAI1 functions as a highly selective Ca++ plasma membrane channel that is gated through interactions with STIM1, the store-activated endoplasmic reticulum Ca++ sensor.

ORAI1 Antibody - References

Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 2001; 19:497-521.

Feske S, Gwack Y, Prakriya M, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441:179-85.

Soboloff J, Spassova MA, Dziadek MA, et al. Calcium signals mediated by STIM and Orai proteins - a new paradigm in inter-organelle communication. Biochim. Biophys. Acta. 2006; 1763:1161-8.