

# GPAT1 Antibody

Catalog # ASC10696

### Specification

## **GPAT1** Antibody - Product Information

Application Primary Accession Other Accession Reactivity Host Clonality Isotype Calculated MW

Application Notes

WB, IHC-P, IF, E <u>O9HCL2</u> <u>NP\_065969</u>, <u>57678</u> Human, Mouse, Rat Rabbit Polyclonal IgG Predicted: 87, 91 kDa

Observed: 92 kDa KDa GPAT1 antibody can be used for detection of GPAT1 by Western blot at 1 - 2  $\mu$ g/mL. Antibody can also be used for immunohistochemistry starting at 2.5  $\mu$ g/mL. For immunofluorescence start at 20  $\mu$ g/mL.

### **GPAT1** Antibody - Additional Information

Gene ID Target/Specificity 57678

#### **Reconstitution & Storage**

GPAT1 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

#### **Precautions**

GPAT1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

### **GPAT1** Antibody - Protein Information

#### Name GPAM (HGNC:24865)

#### Function

Mitochondrial membrane protein that catalyzes the essential first step of biosynthesis of glycerolipids such as triglycerides, phosphatidic acids and lysophosphatidic acids (PubMed:<a href="http://www.uniprot.org/citations/18238778" target="\_blank">18238778</a>, PubMed:<a href="http://www.uniprot.org/citations/19075029" target="\_blank">19075029</a>, PubMed:<a href="http://www.uniprot.org/citations/19075029" target="\_blank">19075029</a>, PubMed:<a href="http://www.uniprot.org/citations/19075029" target="\_blank">36522428</a>). Esterifies acyl-group from acyl- coenzyme A (acyl-CoA) to the sn-1 position of glycerol-3-phosphate, to



produce lysophosphatidic acid (PubMed:<a href="http://www.uniprot.org/citations/18238778" target="\_blank">18238778</a>). Has a narrow hydrophobic binding cleft that selects for a linear acyl chain (PubMed:<a href="http://www.uniprot.org/citations/36522428" target="\_blank">36522428</a>). Catalytic activity is higher for substrates with a 16-carbon acyl chain (PubMed:<a href="http://www.uniprot.org/citations/36522428" target="\_blank">36522428</a>). Catalytic activity is higher for substrates with a 16-carbon acyl chain (PubMed:<a href="http://www.uniprot.org/citations/36522428" target="\_blank">36522428</a>).

#### **Cellular Location**

Mitochondrion outer membrane; Peripheral membrane protein. Note=Associated with the mitochondrion outer membrane of hepatic cells via a patch of basic residues

#### **GPAT1** Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>
- **GPAT1 Antibody Images**



Western blot analysis of FAF1 in THP-1 cell lysate with FAF1 antibody at (A) 1 and (B) 2 µg/mL. GPAT1 Antibody - Background

GPAT1 Antibody: Glycerol-3-phosphate acyltransferase 1 (GPAT1), one of four known GPAT isoforms, is located on the mitochondrial outer membrane, allowing reciprocal regulation with carnitine palmitoyltransferase-1. It is thought to be critical for the development of hepatic steatosis; steatosis triggered by GPAT1 overexpression leads to hepatic and possibly peripheral insulin resistance. GPAT1 is transcriptionally upregulated by insulin and sterol regulatory element binding protein (SREBP-1) and downregulated by AMP-activated protein kinase. Mice deficient in GPAT1 exhibit decreased triacylglycerol (TAG) in cardiomyocytes even in high-fat diets, suggesting that



GPAT1 contributes significantly to TAG accumulation in heart tissue during lipogenic or high fat diets.

### **GPAT1 Antibody - References**

Coleman RA and Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 2004; 43:134-76.

Linden D, William-Olsson L, Ahnmark A, et al. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. FASEB J. 2006; 20:434-43.

Eberle D, Hegarty B, Bossard P, et al. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004; 86:839-48.

Lewin TM, de Jong H, Schwerbrock NJ, et al. Mice deficient in glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition. Biochim. Biophys. Acta 2008; 1781:352-8.