

MRE11 Antibody

Catalog # ASC11039

Specification

MRE11 Antibody - Product Information

Application Primary Accession Other Accession Reactivity Host Clonality Isotype Application Notes

WB, IHC-P, IF, E <u>P49959</u> <u>EAW66932</u>, <u>4361</u> Human, Mouse, Rat Rabbit Polyclonal IgG MRE11 antibody can be used for detection of MRE11 by Western blot at 1 - 2 μg/mL. Antibody can also be used for immunohistochemistry starting at 5 μg/mL. For immunofluorescence start at 20 μg/mL.

MRE11 Antibody - Additional Information

Gene ID

4361

Target/Specificity

MRE11 antibody was raised against a 14 amino acid synthetic peptide from near the amino terminus human MRE11.

The immunogen is located within amino acids 40 - 90 of MRE11.

Reconstitution & Storage

MRE11 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

Precautions

MRE11 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

MRE11 Antibody - Protein Information

Name MRE11 {ECO:0000303|PubMed:8530104, ECO:0000312|HGNC:HGNC:7230}

Function

Core component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:11741547, PubMed:14657032, PubMed:22078559, PubMed:23080121, PubMed:24316220, PubMed:24316220, PubMed:24316220, PubMed:26240375, PubMed:26240375, PubMed:26240375, PubMed:26240375, PubMed:27889449, PubMed:27889449, PubMed:28867292, PubMed:29670289, PubMed:30464262, PubMed:30612738, PubMed:31353207, PubMed:37696958, PubMed:38128537, PubMed:9590181, PubMed:9651580, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:24316220, PubMed:28867292, PubMed:31353207, PubMed:38128537). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:24316220, PubMed:27889449, PubMed:28867292, PubMed:36050397, PubMed:38128537). Within the MRN complex, MRE11 possesses both single-strand endonuclease activity and double-strandspecific 3'-5' exonuclease activity (PubMed:11741547, PubMed:22078559, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:29670289, PubMed:31353207, PubMed:36563124, PubMed:9590181, PubMed:9651580, PubMed:9705271). After DSBs, MRE11 is loaded onto DSBs sites and cleaves DNA by cooperating with RBBP8/CtIP to initiate end resection (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 first endonucleolytically cleaves the 5' strand at DNA DSB ends to prevent non-homologous end joining (NHEJ) and licence HR (PubMed:24316220). It then generates a single-stranded DNA gap via 3' to 5' exonucleolytic degradation to create entry sites for EXO1- and DNA2-mediated 5' to 3' long-range resection, which is required for single-strand invasion and recombination (PubMed:24316220, PubMed:28867292). RBBP8/CtIP specifically promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 endonuclease activity is also enhanced by AGER/RAGE (By similarity). The MRN complex is also required for DNA damage signaling via activation of the ATM and ATR kinases: the nuclease

activity of MRE11 is not required to activate ATM and ATR (PubMed:14657032, PubMed:15064416, PubMed:15790808, PubMed:16622404). The MRN complex is also required for the processing of R-loops (PubMed:31537797). The MRN complex is involved in the activation of the cGAS-STING pathway induced by DNA damage during tumorigenesis: the MRN complex acts by displacing CGAS from nucleosome sequestration, thereby activating it (By similarity). In telomeres the MRN complex may modulate t-loop formation (PubMed:10888888).

Cellular Location

Nucleus. Chromosome. Chromosome, telomere Note=Localizes to DNA double-strand breaks (DSBs)

MRE11 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

MRE11 Antibody - Images

Immunofluorescence of IL-11 in HeLa cells with IL-11 antibody at 20 μ g/ml.

MRE11 Antibody - Background

MRE11 Antibody: MRE11 is involved in the repair of DNA double strand breaks as part of a complex that includes the Rad50 and NBS1 protein and is thought to act in the same pathway as the A-T mutated (ATM) protein. By itself, the protein has 3' to 5' exonuclease activity and endonuclease activity. The protein forms a complex with the RAD50 homolog; this complex is required for non-homologous joining of DNA ends and possesses increased single-stranded DNA endonuclease

and 3' to 5' exonuclease activities. In conjunction with a DNA ligase, this protein promotes the joining of noncomplementary ends in vitro using short homologies near the ends of the DNA fragments. Mutations in this protein result in a novel ataxia telangiectasia-like disorder (ATLD). Unlike the ATM protein, MRE11 is necessary proper mammalian development.

MRE11 Antibody - References

Stewart GS, Maser RS, Stankovic T, et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia telangiectasia-like disorder. Cell1999; 99:577-87. Buis J, Wu Y, Deng Y, et al. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell2008; 135:85-96.