

APC5 Antibody

Catalog # ASC11117

Specification

APC5 Antibody - Product Information

Application
Primary Accession
Other Accession
Reactivity
Host
Clonality
Isotype
Application Notes

WB, IHC-P, IF, E
Q9UJX4
Q9UJX4, 37537861
Human, Mouse, Rat
Rabbit
Polyclonal
IgG
APC5 antibody can be used for detection of
APC5 by Western blot at 1 - 2 μg/mL.
Antibody can also be used for
immunohistochemistry starting at 5 μg/mL.

For immunofluorescence start at 20 µg/mL.

APC5 Antibody - Additional Information

Gene ID Target/Specificity ANAPC5; 51433

Reconstitution & Storage

APC5 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

Precautions

APC5 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

APC5 Antibody - Protein Information

Name ANAPC5

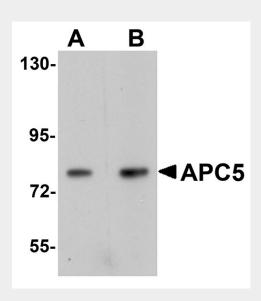
Synonyms APC5

Function

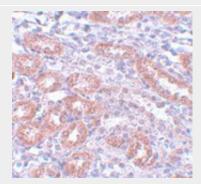
Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:<a href="http://www.uniprot.org/citations/29033132"

target="_blank">29033132).

Cellular Location

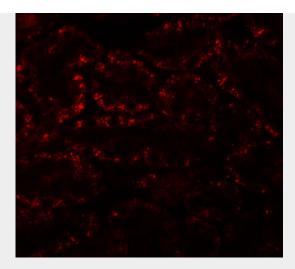

Nucleus. Cytoplasm, cytoskeleton, spindle

APC5 Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

APC5 Antibody - Images



Western blot analysis of APC5 in human kidney tissue lysate with APC5 antibody at (A) 1 and (B) $2 \mu g/mL$.

Immunohistochemistry of APC5 in rat kidney tissue with APC5 antibody at 5 μ g/mL.

Immunofluorescence of APC5 in rat kidney tissue with APC5 antibody at 20 µg/mL.

APC5 Antibody - Background

APC5 Antibody: Cell cycle regulated protein ubiquitination and degradation within subcellular domains is thought to be essential for the normal progression of mitosis. APC5 is a highly conserved component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle. APC/C is responsible for degrading anaphase inhibitors, mitotic cyclins, and spindle-associated proteins ensuring that events of mitosis take place in proper sequence. The individual APC/C components mRNA and protein levels are expressed at approximately the same levels in most tissues and cell lines, suggesting that they perform their functions as part of a complex. While little is known of APC5, it is thought that APC5 associates with other APC/C components APC1, APC4, and CDC23 interdependently, such that loss of any one subunit reduces binding between the remaining three.

APC5 Antibody - References

JM Peters. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol.2006; 7:644-56.

Jorgensen PM, Graslund S, Betz R, et al. Characterisation of the human APC1, the largest subunit of the anaphase-promoting complex. Gene2001; 262:51-9.

Thronton BR, Ng TM, Matyskiela ME, et al. An architectural map of the anaphase-promoting complex. Genes Dev.2006; 20:449-60.