

USP10 Antibody

Catalog # ASC11147

Specification

USP10 Antibody - Product Information

Application Primary Accession Other Accession Reactivity Host Clonality Isotype Application Notes WB, IF, ICC, E <u>O14694</u> NP_005144, <u>119220605</u> Human, Mouse Rabbit Polyclonal IgG USP10 antibody can be used for detection of USP10 by Western blot at 1 - 2 μg/mL. Antibody can also be used for immunocytochemistry starting at 20 μg/mL. For immunofluorescence start at 20 μg/mL.

USP10 Antibody - Additional Information

Gene ID Target/Specificity USP10;

Reconstitution & Storage

USP10 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

9100

Precautions

USP10 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

USP10 Antibody - Protein Information

Name USP10 {ECO:0000303|PubMed:11439350, ECO:0000312|HGNC:HGNC:12608}

Function

Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiguitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiguitination of 40S ribosome subunits (PubMed: 27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid- liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiguitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed: 31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome guality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed: 19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiguitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGImediated MAVS activation. Mechanistically, removes the unanchored 'Lys- 63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed: 37582970).

Cellular Location

Cytoplasm. Nucleus. Early endosome. Note=Cytoplasmic in normal conditions (PubMed:20096447). After DNA damage, translocates to the nucleus following phosphorylation by ATM (PubMed:20096447)

Tissue Location Widely expressed..

USP10 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

<u>Western Blot</u>

- <u>Blocking Peptides</u>
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

USP10 Antibody - Images

Western blot analysis of USP10 in Jurkat cell lysate with USP10 antibody at (A) 1 and (B) 2 μ g/mL.

Immunocytochemistry of USP10 in Jurkat cells with USP10 antibody at 20 μ g/mL.

Immunofluorescence of USP10 in Jurkat cells with USP10 antibody at 20 μ g/mL.

USP10 Antibody - Background

USP10 Antibody: USP10, also known as ubiquitin specific peptidase 10, belongs to the ubiquitin-specific protease family of cysteine proteases. USP10 functions to catalyze the cleavage of ubiquitin from ubiquitin-conjugated protein substrates such as p53/TP53, SNX3 and CFTR. USP10 has been identified as a subunit of DNA-bound androgen receptor (AR) complexes and may play a role in the activity of the DNA-bound androgen receptor complex. USP10 also acts as an essential regulator of p53/TP53 stability and is thought to function as a tumor suppressor.

USP10 Antibody - References

D'Andrea A and Pellman D. Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol.1998; 33:337-52.

Bomberger JM, Barnaby RL, and Stanton BA. The deubiquitinating enzyme USP10 regulates the endocytic recycling of CFTR in airway epithelial cells. Channels2010; 4(3).

Faus H, Meyer HA, Huber M, et al. The ubiquitin-specific protease USP10 modulates androgen receptor function. Mol. Cell. Endocrinol.2005; 245:138-46.

Yuan J, Luo K, Zhang L, et al. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 2010; 140:384-96.