

ZIP6 Antibody

Catalog # ASC11247

Specification

ZIP6 Antibody - Product Information

Application
Primary Accession
Other Accession
Reactivity
Host
Clonality
Isotype
Application Notes

WB, IHC, IF 013433

NP_001092876, 153252214

Human, Mouse

Rabbit Polyclonal

IgG

ZIP6 antibody can be used for detection of ZIP6 by Western blot at 1 µg/mL. Antibody

can also be used for

immunohistochemistry starting at 2.5 µg/mL. For immunofluorescence start at 20

μg/mL.

ZIP6 Antibody - Additional Information

Gene ID Target/Specificity SLC39A6:

25800

Reconstitution & Storage

ZIP6 antibody can be stored at 4° C for three months and -20° C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

Precautions

ZIP6 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

ZIP6 Antibody - Protein Information

Name SLC39A6 (<u>HGNC:18607</u>)

Synonyms LIV1, ZIP6

Function

Zinc-influx transporter which plays a role in zinc homeostasis and in the induction of epithelial-to-mesenchymal transition (EMT) (PubMed:<a

 $\label{lem:http://www.uniprot.org/citations/27274087"} target="_blank">27274087, PubMed:18272141, PubMed:21422171, PubMed:34394081, PubMed:23919497, PubMed:12839489). When$

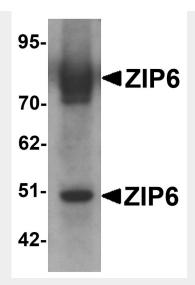
associated with SLC39A10, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial- to- mesenchymal transition (EMT) (PubMed: 27274087). The SLC39A10-SLC39A6 heterodimer also controls NCAM1 phosphorylation and its integration into focal adhesion complexes during EMT (By similarity). Zinc influx inactivates GSK3B, enabling unphosphorylated SNAI1 in the nucleus to down-regulate adherence genes such as CDH1, causing loss of cell adherence (PubMed: 23919497). In addition, the SLC39A10-SLC39A6 heterodimer plays an essential role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Participates in the T-cell receptor signaling regulation by mediating cellular zinc uptake into activated lymphocytes (PubMed:30552163, PubMed:21422171, PubMed:34394081). Regulates the zinc influx necessary for proper meiotic progression to metaphase II (MII) that allows the oocyte-to-egg transition (PubMed: 25143461).

Cellular Location

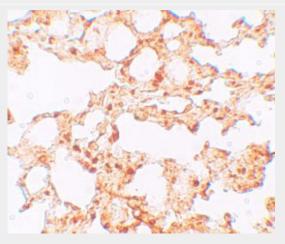
Cell membrane; Multi-pass membrane protein. Cell projection, lamellipodium membrane; Multi-pass membrane protein. Membrane raft; Multi-pass membrane protein. Apical cell membrane {ECO:0000250|UniProtKB:Q4V887} Note=Localizes to lipid rafts in T cells and is recruited into the immunological synapse in response to TCR stimulation (PubMed:34394081) In the choroid plexus is limited to the apical membrane in epithelial cells (By similarity). {ECO:0000250|UniProtKB:Q4V887, ECO:0000269|PubMed:34394081}

Tissue Location

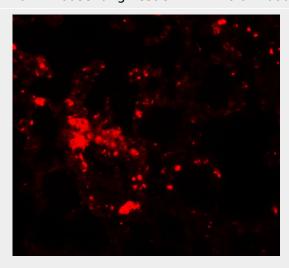
Highly expressed in the breast, prostate, placenta, kidney, pituitary and corpus callosum (PubMed:12839489). Weakly expressed in heart and intestine. Also highly expressed in cells derived from an adenocarcinoma of the cervix and lung carcinoma (PubMed:12839489).


ZIP6 Antibody - Protocols

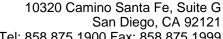
Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cvtometv
- Cell Culture

ZIP6 Antibody - Images



Western blot analysis of ZIP6 in mouse lung tissue lysate with ZIP6 antibody at 1 μ g/mL.


Immunohistochemistry of ZIP6 in mouse lung tissue with ZIP6 antibody at 5 μg/mL.

Immunofluorescence of ZIP6 in mouse lung tissue with ZIP6 antibody at 20 μg/mL.

ZIP6 Antibody - Background

ZIP6 Antibody: The zinc transporter ZIP6, also known as SLC39A6, is a member of a family of divalent ion transporters. Zinc is an essential ion for cells and plays significant roles in the growth,

Tel: 858.875.1900 Fax: 858.875.1999

development, and differentiation. ZIP6 was initially identified as LIV-1, an estrogen-regulated gene that has been implicated in metastatic breast cancer. Elevated ZIP6 expression has also been reported in human cervical cancer and the HeLa cell line; down-regulation of ZIP6 expression in HeLa by RNAi inhibited cell proliferation, colony formation, migration and invasiveness, as well as decreasing Snail and Slug levels, suggesting ZIP6 plays a regulatory role on the ERK1/2-Snail/Slug pathway.

ZIP6 Antibody - References

Dufner-Beattie J, Langmade SJ, Wang F, et al. Structure, function, and regulation of a subfamily of mouse zinc transporter genes. J. Biol. Chem. 2003; 278:50142-50.

Eide DJ. The SLC39 family of metal ion transporters. Pflugers Arch.2004; 447:796-800.

Taylor KM and Nicohlson RI. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim. Biophys. Acta.2003; 1611:16-30.

Taylor KM. LIV-1 breast cancer protein belongs to new family of histidine-rich membrane proteins with potential to control intracellular ZN2+ homeostasis. IUBMB Life2000; 49:249-53.