

## **ACSL1 Antibody**

Catalog # ASC11566

### **Specification**

## **ACSL1 Antibody - Product Information**

Application
Primary Accession
Other Accession
Reactivity
Host
Clonality
Isotype

Calculated MW Application Notes WB, IF, E P33121

NP\_001986, 40807491 Human, Mouse, Rat

Rabbit Polyclonal

lgG

77 kDa KDa

ACSL1 antibody can be used for detection of ACSL1 by Western blot at 1 - 2 μg/mL. For immunofluorescence start at 20 μg/mL.

# **ACSL1 Antibody - Additional Information**

Gene ID **2180** 

**Target/Specificity** 

ACSL1; At least three isoforms of ACSL1 are known to exist; this antibody will detect all three isoforms.

## **Reconstitution & Storage**

ACSL1 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

#### **Precautions**

ACSL1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

### ACSL1 Antibody - Protein Information

### Name ACSL1 (HGNC:3569)

#### **Function**

Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:<a

href="http://www.uniprot.org/citations/21242590" target="\_blank">21242590</a>, PubMed:<a href="http://www.uniprot.org/citations/22633490" target="\_blank">22633490</a>, PubMed:<a href="http://www.uniprot.org/citations/24269233" target="\_blank">24269233</a>). Preferentially uses palmitoleate, oleate and linoleate (PubMed:<a

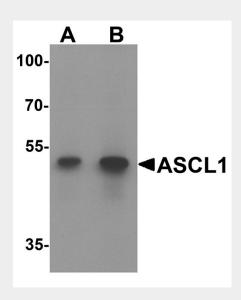
href="http://www.uniprot.org/citations/24269233" target="\_blank">24269233</a>). Preferentially activates arachidonate than epoxyeicosatrienoic acids (EETs) or hydroxyeicosatrienoic acids (HETEs) (By similarity).

# **Cellular Location**



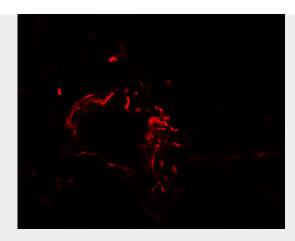
Mitochondrion outer membrane; Single-pass type III membrane protein. Peroxisome membrane; Single-pass type III membrane protein. Microsome membrane; Single-pass type III membrane protein. Endoplasmic reticulum membrane; Single-pass type III membrane protein

### **Tissue Location**


Highly expressed in liver, heart, skeletal muscle, kidney and erythroid cells, and to a lesser extent in brain, lung, placenta and pancreas.

## **ACSL1 Antibody - Protocols**

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

# **ACSL1 Antibody - Images**



Western blot analysis of ACSL1 in human lung tissue lysate with ACSL1 antibody at (A) 1 and (B)  $2 \mu g/mL$ .





Immunofluorescence of ASCL1 in human lung tissue with ASCL1 antibody at 20 μg/mL.

# **ACSL1 Antibody - Background**

ACSL1 Antibody: Long-chain acyl coenzyme A synthetase 1 (ACSL1) catalyzes the synthesis of acyl-CoA from long-chain fatty acids in an ATP-dependent manner. ACSL1 is a member of a family of long-chain acyl-CoA synthetases which differ in substrate preference, tissue expression, and subcellular localization. In mouse, ASCL1 is the major acyl-CoA enzyme in the heart, providing 60-90% of heart ATP. Loss of ASCL1 either globally or in heart ventricles resulted in impaired fatty acid oxidation, activation of the mammalian target of rapamycin (mTOR), and cardiac hypertrophy.

## **ACSL1 Antibody - References**

Black PN and DiRusso CC. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol. Mol. Biol. Rev. 2003; 67:454-72. Coleman RA, Lewin TM, Van Horn CG, et al. Do acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J. Nutr. 2002; 132:2123-6.

Clark H, Carling D, and Saggerson D. Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids. Eur. J. Biochem. 2004; 271:2215-24

Ellis JM, Mentock SM, DePetrillo MA, et al. Mouse cardiac acyl Coenzyme A synthetase 1 deficiency impairs fatty acid oxidation and induces cardiac hypertrophy. Mol. Cell. Biol. 2011; 31:1252-62.