

KIRREL3 Antibody

Catalog # ASC11855

Specification

KIRREL3 Antibody - Product Information

Application Primary Accession Other Accession Reactivity Host

Clonality Isotype

Calculated MW

Application Notes

WB, IHC-P, IF, E

08IZU9

NP_115920, 26006461 Human, Mouse, Rat

Rabbit Polyclonal

IqG

Predicted: 64, 84 kDa

Observed: 60 kDa KDa

KIRREL3 antibody can be used for

detection of KIRREL3 by Western blot at 1 - 2 μ g/ml. Antibody can also be used for immunohistochemistry starting at 5 μ g/mL. For immunofluorescence start at 20 μ g/mL.

KIRREL3 Antibody - Additional Information

Gene ID 84623

Target/Specificity

KIRREL3; KIRREL3 antibody is human, mouse and rat reactive. At least two isoforms are known to exist; this antibody will detect both isoforms. KIRREL3 antibody is predicted to not cross-react with other members of the KIRREL protein family.

Reconstitution & Storage

KIRREL3 antibody can be stored at 4°C for three months and -20°C, stable for up to one year.

Precautions

KIRREL3 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

KIRREL3 Antibody - Protein Information

Name KIRREL3 (HGNC:23204)

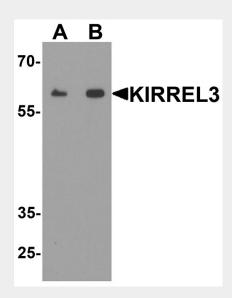
Function

Synaptic adhesion molecule required for the formation of target-specific synapses. Required for formation of target-specific synapses at hippocampal mossy fiber synapses. Required for formation of mossy fiber filopodia, the synaptic structures connecting dentate granule and GABA neurons. Probably acts as a homophilic adhesion molecule that promotes trans-cellular interactions and stabilize mossy fiber filipodia contact and subsequent synapse formation. Required for the coalescence of vomeronasal sensory neuron axons. May be involved in the hematopoietic supportive capacity of stroma cells; the secreted extracellular domain is directly responsible for supporting hematopoietic stem cells.

Cellular Location

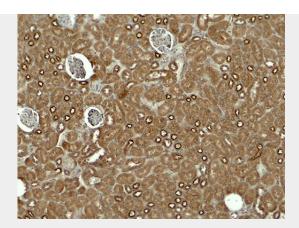
Cell membrane; Single-pass type I membrane protein

Tissue Location

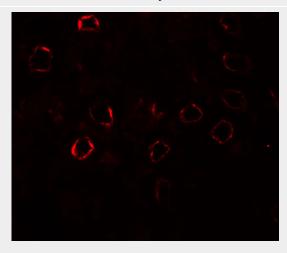

Expressed in fetal and adult brain (PubMed:19012874). Also expressed in kidney, specifically in podocytes of kidney glomeruli (PubMed:12424224). Also expressed in skeletal muscle (PubMed:25488023).

KIRREL3 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

KIRREL3 Antibody - Images



Western blot analysis of KIRREL3 in mouse kidney tissue lysate with KIRREL3 antibody at (A) 1 and (B) 2 μ g/ml.

Immunohistochemistry of KIRREL3 in mouse kidney tissue with KIRREL3 antibody at 5 µg/ml.

Immunofluorescence of KIRREL3 in mouse kidney tissue with KIRREL3 antibody at 20 µg/ml.

KIRREL3 Antibody - Background

KIRREL3, also known as nephrin-like protein 2, is a type I transmembrane protein belonging to a family of three podocin interacting proteins and the immunoglobulin superfamily (1). KIRREL3 is involved in the regulation of both glomerular and neural development (2), and more specifically, the nucleogenesis of the pontine nuclei in the developing hindbrain (3). KIRREL3 has also been shown to interact with the synaptic scaffold protein calmodulin-associated serine/threonine kinase (CASK) in neuronal cells (4).

KIRREL3 Antibody - References

Sellin L, Huber TB, Gerke P, et al. NEPH1 defines a novel family of podocin interacting proteins. FASEB J. 2003; 17:115-7.

Neumann-Haefelin E, Kramer-Zucker A, Slanchev K, et al. A model organism approach: defining the role of Neph proteins as regulators of neuron and kidney morphogenesis. Hum. Mol. Genet. 2010; 19:2347-59.

Nishida K, Nakayama K, Yoshimura S, et al. Role of Neph2 in pontine nuclei formation in the developing hindbrain. Mol. Cell Neurosci. 2011; 46:662-70.

Mizuhara E, Minaki Y, Nakatani T, et al. Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev. Biol. 2010; 338:202-14.