

GABA-A Receptor Alpha 2 Antibody
GABA-A Receptor Alpha 2 Antibody, Clone S399-19
Catalog # ASM10318

Specification

GABA-A Receptor Alpha 2 Antibody - Product Information

Application	WB, IHC, ICC
Primary Accession	P23576
Other Accession	NP_001129251.1
Host	Mouse
Isotype	IgG1
Reactivity	Human, Mouse, Rat
Clonality	Monoclonal

Description

Mouse Anti-Rat GABA-A Receptor Alpha2 Monoclonal IgG1

Target/Specificity

Detects ~55kDa. Does not cross-react with GABA-A Receptor Alpha1.

Other Names

GABA A receptor subunit alpha 2 Antibody, GABRA2 Antibody, Gamma aminobutyric acid A receptor Alpha 2 Antibody, GBRA2_Human Antibody

Immunogen

Fusion protein amino acids 350-385 (Cytoplasmic C-terminus) of rat GABA-A Receptor Alpha2

Purification

Protein G Purified

Storage

-20°C

Storage Buffer

PBS pH7.4, 50% glycerol, 0.1% sodium azide

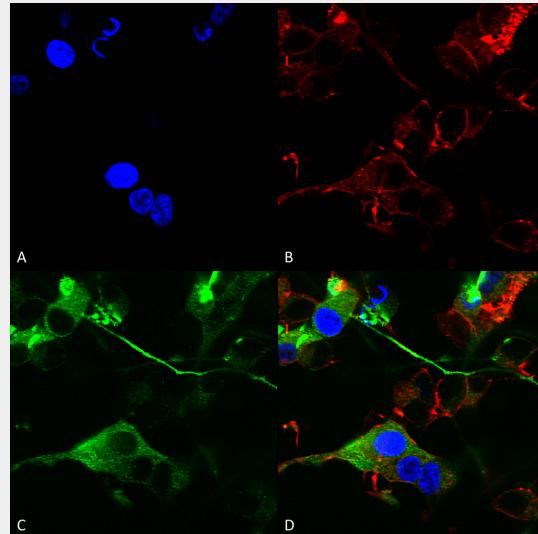
Shipping Temperature

Blue Ice or 4°C

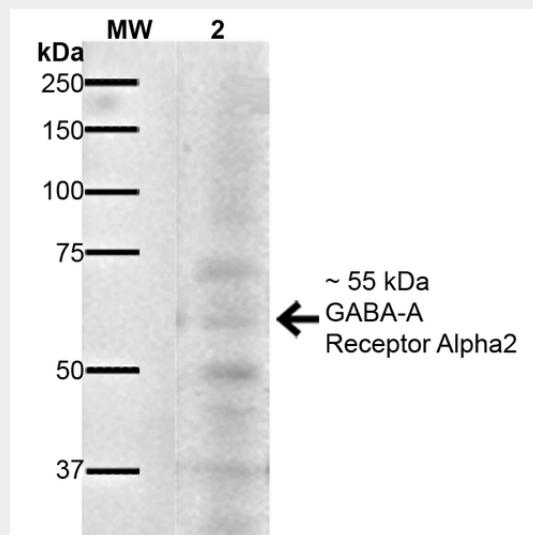
Certificate of Analysis

A 1:100 dilution of SMC-486 was sufficient for detection of GABA-A R, Alpha2 in 20 µg of mouse brain lysate by ECL immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.

Cellular Localization

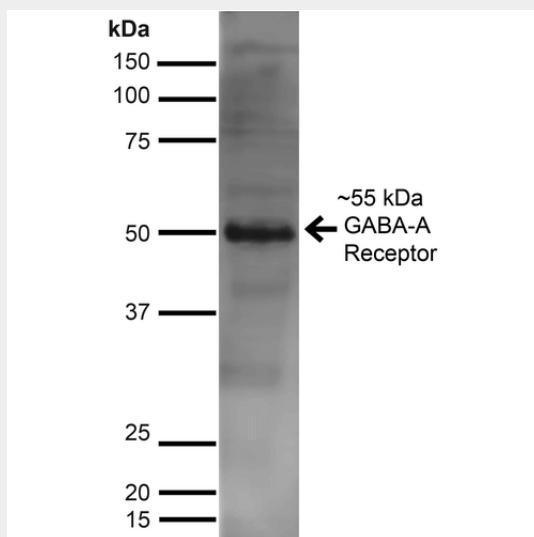

Cytoplasm

GABA-A Receptor Alpha 2 Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)

- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)


GABA-A Receptor Alpha 2 Antibody - Images

Immunocytochemistry/Immunofluorescence analysis using Mouse Anti-GABA-A Receptor Alpha 2 Monoclonal Antibody, Clone N399/19 (ASM10318). Tissue: Neuroblastoma cells (SH-SY5Y). Species: Human. Fixation: 4% PFA for 15 min. Primary Antibody: Mouse Anti-GABA-A Receptor Alpha 2 Monoclonal Antibody (ASM10318) at 1:200 for overnight at 4°C with slow rocking. Secondary Antibody: AlexaFluor 488 at 1:1000 for 1 hour at RT. Counterstain: Phalloidin-iFluor 647 (red) F-Actin stain; Hoechst (blue) nuclear stain at 1:800, 1.6mM for 20 min at RT. (A) Hoechst (blue) nuclear stain. (B) Phalloidin-iFluor 647 (red) F-Actin stain. (C) GABA-A Receptor Alpha 2 Antibody (D) Composite.

Western Blot analysis of Mouse Brain showing detection of ~55 kDa GABA A Receptor Alpha 2 protein using Mouse Anti-GABA A Receptor Alpha 2 Monoclonal Antibody, Clone N399/19 (ASM10318). Lane 1: MW Ladder. Lane 2: Mouse Brain. Load: 20 µg. Primary Antibody: Mouse Anti-GABA A Receptor Alpha 2 Monoclonal Antibody (ASM10318) at 1:1000 for 16 hours at 4°C.

Secondary Antibody: Goat Anti-Mouse IgG: HRP at 1:200 for 1 hour at RT. Predicted/Observed Size: ~55 kDa. Other Band(s): ~ 37 kDa, ~50 kDa, ~70 kDa.

Western Blot analysis of Rat Brain showing detection of ~55 kDa GABA A Receptor Alpha 2 protein using Mouse Anti-GABA A Receptor Alpha 2 Monoclonal Antibody, Clone N399/19 (ASM10318). Lane 1: MW Ladder. Lane 2: Rat Brain. Load: 10 µg. Block: 5% Skim Milk for 1 hour at RT. Primary Antibody: Mouse Anti-GABA A Receptor Alpha 2 Monoclonal Antibody (ASM10318) at 1:1000 for 1 hour at RT. Secondary Antibody: Goat Anti-Mouse IgG: HRP at 1:100 for 1 hour at RT. Color Development: ECL solution for 6 min at RT. Predicted/Observed Size: ~55 kDa.

GABA-A Receptor Alpha 2 Antibody - Background

The GABA-A receptor is a member of the superfamily of fast acting ligand-gated ion channels. The individual subunits of these receptors have similar sequences and structural features (1). GABA-A receptors are the major fast inhibitory neurotransmitter gated ion channels in the brain (2).

GABA-A Receptor Alpha 2 Antibody - References

1. Bracamontes J.R. and Steinbach J.H. (2008) J Bio Chem. 283: 26128-26136.
2. Macdonald R.L., Olsen R.W. (1993) Annu Rev Neurosci. 17: 569-602.