

HSP60 Antibody
Catalog # ASM10360**Specification****HSP60 Antibody - Product Information**

Application	WB, IHC, IP
Primary Accession	P10809
Other Accession	NP_002147.2
Host	Rabbit
Reactivity	Human, Mouse, Rat, Rabbit, Chicken, Bovine, Dog
Clonality	Polyclonal
Description	Rabbit Anti-Human HSP60 Polyclonal

Target/Specificity

Detects ~60kDa.

Other Names

CPN60 Antibody, GROEL Antibody, HLD4 Antibody, HSP 60 Antibody, HSP65 Antibody, HSPD1 Antibody, HuCHA60 Antibody, SPG 13 Antibody

Immunogen

Human HSP60 produced through recombinant DNA methods in E.coli

Purification

Protein A Purified

Storage

-20°C

Storage Buffer

PBS, 50% glycerol, 0.09% sodium azide

Shipping Temperature

Blue Ice or 4°C

Certificate of Analysis

1 µg/ml of SPC-105 was sufficient for detection of HSP60 in 20 µg of heat shocked HeLa cell lysate by colorimetric immunoblot analysis using goat anti-mouse IgG as the secondary antibody.

Cellular Localization

Mitochondrion | Mitochondrion Matrix

HSP60 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)

- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

HSP60 Antibody - Images

HSP60 Antibody - Background

In both prokaryotic and eukaryotic cells, the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones. Members of the HSP60 family of heat shock proteins are some of the best characterized chaperones. HSP60, also known as Cpn60 or GroEl, is an abundant protein synthesized constitutively in the cell that is induced to a higher concentration after brief cell shock. It is present in many species and exhibits a remarkable sequence homology among various counterparts in bacteria, plants, and mammals with more than half of the residues identical between bacterial and mammalian HSP60 (1-3). Whereas mammalian HSP60 is localized within the mitochondria, plant HSP60, or otherwise known as Rubisco-binding protein, is located in plant chloroplasts. It has been indicated that these proteins carry out a very important biological function due to the fact that HSP60 is present in so many different species. The common characteristics of the HSP60s from the divergent species are i) high abundance, ii) induction with environmental stress such as heat shock, iii) homo-oligomeric structures of either 7 or 14 subunits which reversibly dissociate in the presence of Mg²⁺ and ATP, iv) ATPase activity and v) a role in folding and assembly of oligomeric protein structures (4). These similarities are supported by recent studies where the single-ring human mitochondrial homolog, HSP60 with its co-chaperonin, HSP10 were expressed in a *E. coli* strain, engineered so that the groE operon is under strict regulatory control. This study has demonstrated that expression of HSP60-HSP10 was able to carry out all essential in vivo functions of GroEL and its co-chaperonin, GroES (5). HSP60 has however been linked to a number of autoimmune diseases, as well as Alzheimer's, coronary artery diseases, MS, and diabetes (6-9).

HSP60 Antibody - References

1. Hartl, F.U. (1996) *Nature* 381: 571-579.
2. Bukau, B. and Horwich, A.L. (1998) *Cell* 92: 351-366.
3. Hartl, F.U. and Hayer-Hartl, M. (2002) *Science* 295: 1852- 1858.
4. Jindal, S., et al. (1989) *Molecular and Cellular Biology* 9: 2279-2283.
5. La Verda, D., et al (1999) *Infect Dis. Obstet. Gynecol.* 7: 64-71.
6. Itoh, H. et al. (2002) *Eur. J. Biochem.* 269: 5931-5938.
7. Gupta, S. and Knowlton, A.A. *J. Cell Mol Med.* 9: 51-58.
8. Deocaris, C.C. et al. (2006) *Cell Stress Chaperones* 11: 116-128.
9. Lai, H.C. et al. (2007) *Am. J. Physiol. Endocrinol. Metab.* 292: E292-E297.
10. Gao, Y.L., et al (1995) *J. of Immunology* 154: 3548-3556.
11. Neuer, A., et al (1997) *European Society for Human Reproduction and Embryology* 12(5):925-929.
12. Bason, C., et al (2003) *Lancet* 362(9400): 1971-1977.