Anti-HICE1 Secondary Antibody Rabbit Polyclonal, Unconjugated Catalog # ASR3294 ### **Specification** # **Anti-HICE1 Secondary Antibody - Product Information** Description Anti-HICE1 (Rabbit) Antibody Host Rabbit Conjugate Unconjugated Target Species Reactivity Human Clonality Polyclonal Application ,1,10, Application Note ELISA 1:250,000; Western Blot 1:10,000 Physical State Liquid (sterile filtered) Host Isotype Antiserum Buffer 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2 Immunogen Anti-HICE1 was prepared from whole rabbit serum produced by repeated immunizations with a recombinant full length Hice1 protein. Stabilizer None Preservative 0.01% (w/v) Sodium Azide # **Anti-HICE1 Secondary Antibody - Additional Information** # **Shipping Condition**Dry Ice # Purity This product was adsorbed against GST from monospecific antiserum by immunoaffinity chromatography. This antibody reacts with endogenous Hice1 protein. A BLAST analysis was used to suggest reactivity with Hice1 from human based on a 100% homology with the immunizing sequence. Expect reactivity with Hice1 from chimpanzee, Sumatran orangutan based on a 90% homology with the immunizing sequence. Cross-reactivity with Hice1 from other sources has not been determined. #### **Storage Condition** Store vial at -20° C prior to opening. Aliquot contents and freeze at -20° C or below for extended storage. Avoid cycles of freezing and thawing. Centrifuge product if not completely clear after standing at room temperature. This product is stable for several weeks at 4° C as an undiluted liquid. Dilute only prior to immediate use. #### **Precautions Note** This product is for research use only and is not intended for therapeutic or diagnostic applications. # **Anti-HICE1 Secondary Antibody - Protein Information** # **Anti-HICE1 Secondary Antibody - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture # **Anti-HICE1 Secondary Antibody - Images** Anti-HICE1 in Western Blot using Abcepta Immunochemicals' Anti-HICE1 Antibody shows detection of a 45 kDa band corresponding to endogenous HICE1 in lysates of S phase HeLa cells silenced for either control Luciferase or HICE1. In right lane (HICE1i): lysates from sh-HICE1 RNAi-treated lentivirus-infected cells. In left lane (GLi): lysates from sh-Luciferase lentivirus-infected cells as control. Anti-HICE1 Antibody was used at 1:10,000. Molecular weight estimation was made by comparison by prestained MW markers. ECL was used for detection. Personal communication, Kyung S. Lee, NCI, Bethesda, MD. # **Anti-HICE1 Secondary Antibody - Background** This antibody is designed, produced, and validated as part of a collaboration between Rockland and the National Cancer Institute (NCI) and is suitable for Cancer, Immunology and Nuclear Signaling research. Hice1 contributes to the mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Normal bipolar spindle formation is critical for accurate chromosome segregation and proper mitotic progression. Failure in this event leads to spindle checkpoint activation and chromosome missegregation that ultimately leads to an euploidy. Hice 1 binds to microtubules directly, and promotes spindle integrity and chromosome stability. Hice1 has also shown to play an important role in targeting the ?TuRC complex to the mitotic spindle, a step that appears to be required for spindle-mediated microtubule generation and normal chromosome segregation. The HAUS augmin-like complex's interaction with microtubules is strong during mitosis, while it is weak or absent during interphase. During interphase, it is primarily cytoplasmic, associating with centrosomes and with the mitotic spindles, preferentially at the spindle pole vicinity. During anaphase and telophase, it additionally associates with the spindle midzone and midbody, respectively. Further characterization of the function of Hice1 will likely be important for better understanding the mechanism of normal mitotic progression and high fidelity chromosome segregation.