

TSN Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AW5088

Specification

TSN Antibody (Center) - Product Information

Application IF, IHC-P, WB,E

Primary Accession <u>Q15631</u>

Other Accession <u>Q62348</u>, <u>P97891</u>, <u>Q08DM8</u>, <u>NP 004613.1</u>

Reactivity Human

Predicted Bovine, Hamster, Mouse

Host
Clonality
Calculated MW
Isotype
Antigen Source

Rabbit
Polyclonal
H=26;M=26 KDa
Rabbit IgG
HUMAN

TSN Antibody (Center) - Additional Information

Gene ID 7247

Antigen Region

109-138

Other Names

TSN; Translin; Component 3 of promoter of RISC

Dilution

IF~~1:10~50 IHC-P~~1:10~50 WB~~1:1000

Target/Specificity

This TSN antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 109-138 amino acids from the Central region of human TSN.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

TSN Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

TSN Antibody (Center) - Protein Information

Name TSN (HGNC:12379)

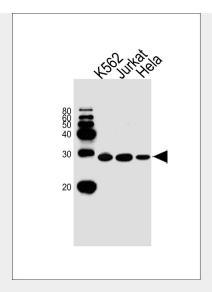
Function

DNA-binding protein that specifically recognizes consensus sequences at the breakpoint junctions in chromosomal translocations, mostly involving immunoglobulin (Ig)/T-cell receptor gene segments. Seems to recognize single-stranded DNA ends generated by staggered breaks occurring at recombination hot spots.

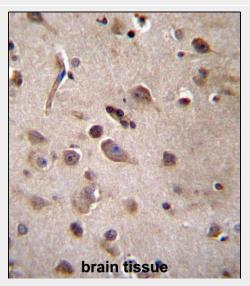
Cellular Location Cytoplasm. Nucleus

TSN Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

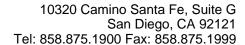

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

TSN Antibody (Center) - Images



Fluorescent confocal image of Hela cell stained with TSN Antibody(Center)(Cat#AW5088).Hela cells were fixed with 4% PFA (20 min), permeabilized with Triton X-100 (0.1%, 10 min), then incubated with TSN primary antibody (1:25, 1 h at 37°C). For secondary antibody, Alexa Fluor® 488 conjugated donkey anti-rabbit antibody (green) was used (1:400, 50 min at 37°C).Cytoplasmic actin was counterstained with Alexa Fluor® 555 (red) conjugated Phalloidin (7units/ml, 1 h at 37°C). Nuclei were counterstained with DAPI (blue) (10 μ g/ml, 10 min).TSN immunoreactivity is localized to Nucleus and Cytoplasm significantly.

Western blot analysis of lysates from K562, Jurkat, Hela cell line (from left to right), using TSN Antibody(Center)(Cat. #AW5088). AW5088 was diluted at 1:1000 at each lane. A goat anti-rabbit IgG H&L(HRP) at 1:10000 dilution was used as the secondary antibody.



TSN Antibody (Center) (Cat. #AW5088)immunohistochemistry analysis in formalin fixed and paraffin embedded human brain tissue followed by peroxidase conjugation of the secondary antibody and DAB staining. This data demonstrates the use of TSN Antibody (Center) for immunohistochemistry. Clinical relevance has not been evaluated.

TSN Antibody (Center) - Background

This gene encodes a DNA-binding protein which specifically recognizes conserved target sequences at the breakpoint junction of chromosomal translocations. Translin polypeptides form a multimeric structure that is responsible for its DNA-binding activity. Recombination-associated motifs and translin-binding sites are present at recombination hotspots and may serve as indicators of breakpoints in genes which are fused by translocations. These binding activities may play a crucial role in chromosomal translocation in lymphoid neoplasms.

TSN Antibody (Center) - References

Chiaruttini, C., et al. Proc. Natl. Acad. Sci. U.S.A. 106(38):16481-16486(2009) Lasky-Su, J., et al. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B (8), 1345-1354 (2008): Sengupta, K., et al. Biochemistry 45(3):861-870(2006) Kaluzhny, D., et al. J. Biomol. Struct. Dyn. 23(3):257-265(2005) Gupta, G.D., et al. FEBS Lett. 579(14):3141-3146(2005)