PARP3 Antibody (N-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AW5272 ## **Specification** ## PARP3 Antibody (N-term) - Product Information WB.E Application **Primary Accession** 09Y6F1 Reactivity Human Host **Rabbit** Clonality **Polyclonal** Calculated MW H=60,61 KDa Isotype Rabbit IgG **Antigen Source** Human ## PARP3 Antibody (N-term) - Additional Information **Gene ID** 10039 **Antigen Region** 99-126 ### **Other Names** PARP3; ADPRTL3; Poly [ADP-ribose] polymerase 3; Poly [ADP-ribose] polymerase 3; ADP-ribosyltransferase diphtheria toxin-like 3; Poly [ADP-ribose] polymerase 3; IRT1; Poly [ADP-ribose] polymerase 3; NAD(+) ADP-ribosyltransferase 3; Poly [ADP-ribose] polymerase 3; Poly[ADP-ribose] synthase 3 ## **Dilution** WB~~ 1:1000 # Target/Specificity This PARP3 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 99-126 amino acids from the N-terminal region of human PARP3. ### **Format** Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. ## **Storage** Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. #### **Precautions** PARP3 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures. # PARP3 Antibody (N-term) - Protein Information Name PARP3 {ECO:0000303|PubMed:10329013, ECO:0000312|HGNC:HGNC:273} ### **Function** Mono-ADP-ribosyltransferase that mediates mono-ADP- ribosylation of target proteins and plays a key role in the response to DNA damage (PubMed:16924674, PubMed:19354255, PubMed:20064938, PubMed:21211721, PubMed:21270334, PubMed:23742272, PubMed:24598253, PubMed:25043379, PubMed:28447610). Mediates mono-ADP-ribosylation of glutamate, aspartate or lysine residues on target proteins (PubMed: 20064938, PubMed:25043379). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed: 25043379). Involved in DNA repair by mediating mono-ADP-ribosylation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism, such as histone H2B, XRCC5 and XRCC6 (PubMed:16924674, PubMed:24598253). ADP-ribosylation follows DNA damage and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks (PubMed:16924674, PubMed:21211721, PubMed:21270334). Involved in single-strand break repair by catalyzing mono-ADP-ribosylation of histone H2B on 'Glu-2' (H2BE2ADPr) of nucleosomes containing nicked DNA (PubMed: 27530147). Cooperates with the XRCC5-XRCC6 (Ku80-Ku70) heterodimer to limit end-resection thereby promoting accurate NHEI (PubMed: 24598253). Suppresses G-quadruplex (G4) structures in response to DNA damage (PubMed: 28447610). Associates with a number of DNA repair factors and is involved in the response to exogenous and endogenous DNA strand breaks (PubMed: 16924674, PubMed:21211721, PubMed:21270334). Together with APLF, promotes the retention of the LIG4-XRCC4 complex on chromatin and accelerate DNA ligation during non-homologous end-joining (NHEJ) (PubMed:21211721). May link the DNA damage surveillance network to the mitotic fidelity checkpoint (PubMed:16924674). Acts as a negative regulator of immunoglobulin class switch recombination, probably by controlling the level of AICDA /AID on the chromatin (By similarity). In addition to proteins, also able to ADP-ribosylate DNA: mediates DNA mono-ADP- ribosylation of DNA strand break termini via covalent addition of a single ADP-ribose moiety to a 5'- or 3'-terminal phosphate residues in DNA containing multiple strand breaks (PubMed: 29361132, PubMed:29520010). #### **Cellular Location** Nucleus. Chromosome. Cytoplasm, cytoskeleton, microtubule organizing center, centrosome. Cytoplasm, cytoskeleton, microtubule organizing center, centrosome, centriole. Note=Almost exclusively localized in the nucleus and appears in numerous small foci and a small number of larger foci whereas a centrosomal location has not been detected (PubMed:16924674). In response to DNA damage, localizes to sites of double-strand break (PubMed:21270334, PubMed:28447610). Also localizes to single-strand breaks (PubMed:27530147). Preferentially localized to the daughter centriole (PubMed:10329013). ### **Tissue Location** Widely expressed; the highest levels are in the kidney, skeletal muscle, liver, heart and spleen; also detected in pancreas, lung, placenta, brain, leukocytes, colon, small intestine, ovary, testis, prostate and thymus. ### PARP3 Antibody (N-term) - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture ## PARP3 Antibody (N-term) - Images Western blot analysis of lysates from K562,MDA-MB-453,NCI-H292,A549,Hela,CEM cell line (from left to right), using PARP3 Antibody (N-term)(Cat. #AW5272). AW5272 was diluted at 1:1000 at each lane. A goat anti-rabbit IgG H&L(HRP) at 1:10000 dilution was used as the secondary antibody. ## PARP3 Antibody (N-term) - Background Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. May link the DNA damage surveillance network to the mitotic fidelity checkpoint. Negatively influences the G1/S cell cycle progression without interfering with centrosome duplication. Binds DNA. May be involved in the regulation of PRC2 and PRC3 complex-dependent gene silencing.