

## **HDAC6 Antibody (C-term) Blocking Peptide**

Synthetic peptide Catalog # BP1106a

## **Specification**

## **HDAC6 Antibody (C-term) Blocking Peptide - Product Information**

Primary Accession Q9UBN7
Other Accession NP\_006035

# HDAC6 Antibody (C-term) Blocking Peptide - Additional Information

Gene ID 10013

#### **Other Names**

Histone deacetylase 6, HD6, HDAC6, KIAA0901

## Target/Specificity

The synthetic peptide sequence used to generate the antibody <a href=/product/products/AP1106a>AP1106a</a> was selected from the C-term region of human HDAC6. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

### **Format**

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

#### Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

#### **Precautions**

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

## HDAC6 Antibody (C-term) Blocking Peptide - Protein Information

Name HDAC6 {ECO:0000303|PubMed:10220385, ECO:0000312|HGNC:HGNC:14064}

## **Function**

Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:<a href="http://www.uniprot.org/citations/10220385" target="\_blank">10220385</a>). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:<a href="http://www.uniprot.org/citations/10220385" target="\_blank">10220385</a>). Histone deacetylases act via the formation of large multiprotein complexes (PubMed:<a href="http://www.uniprot.org/citations/10220385" target="\_blank">10220385</a>). In addition to histones, deacetylates other proteins, such as CTTN, tubulin and SQSTM1 (PubMed:<a href="http://www.uniprot.org/citations/12024216" target="\_blank">12024216</a>, PubMed:<a href="http://www.uniprot.org/citations/20308065" target=" blank">20308065</a>, PubMed:<a href="http://www.uniprot.org/citations/26246421"



target=" blank">26246421</a>, PubMed:<a href="http://www.uniprot.org/citations/31857589" target="blank">31857589</a>, PubMed:<a href="http://www.uniprot.org/citations/30538141" target="blank">30538141</a>). Plays a central role in microtubule-dependent cell motility by mediating deacetylation of tubulin (PubMed:<a href="http://www.uniprot.org/citations/12024216" target=" blank">12024216</a>, PubMed:<a href="http://www.uniprot.org/citations/20308065" target=" blank">20308065</a>, PubMed:<a href="http://www.uniprot.org/citations/26246421" target=" blank">26246421</a>). Required for cilia disassembly; via deacetylation of alpha-tubulin (PubMed: <a href="http://www.uniprot.org/citations/17604723" target=" blank">17604723</a>, PubMed:<a href="http://www.uniprot.org/citations/26246421" target="blank">26246421</a>). Promotes deacetylation of CTTN, leading to actin polymerization, promotion of autophagosome-lysosome fusion and completion of autophagy (PubMed:<a href="http://www.uniprot.org/citations/30538141" target=" blank">30538141</a>). Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer (PubMed:<a href="http://www.uniprot.org/citations/24413532" target=" blank">24413532</a>). Promotes odontoblast differentiation following IPO7-mediated nuclear import and subsequent repression of RUNX2 expression (By similarity). In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome (PubMed:<a href="http://www.uniprot.org/citations/17846173" target=" blank">17846173</a>). Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and target them to the aggresome, facilitating their clearance by autophagy (PubMed: <a href="http://www.uniprot.org/citations/17846173" target="blank">17846173</a>).

### **Cellular Location**

Cytoplasm. Cytoplasm, cytoskeleton. Nucleus {ECO:0000250|UniProtKB:Q9Z2V5}. Perikaryon {ECO:0000250|UniProtKB:Q9Z2V5}. Cell projection, dendrite {ECO:0000250|UniProtKB:Q9Z2V5}. Cell projection, axon {ECO:0000250|UniProtKB:Q9Z2V5}. Cell projection, cilium. Cytoplasm, cytoskeleton, microtubule organizing center, centrosome. Cytoplasm, cytoskeleton, cilium basal body. Note=It is mainly cytoplasmic, where it is associated with microtubules

## **HDAC6 Antibody (C-term) Blocking Peptide - Protocols**

Provided below are standard protocols that you may find useful for product applications.

### • Blocking Peptides

**HDAC6 Antibody (C-term) Blocking Peptide - Images** 

### HDAC6 Antibody (C-term) Blocking Peptide - Background

HDAC6 (histone deacetylase 6) is responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. HDAC6 plays a central role in microtubule-dependent cell motility via deacetylation of tubulin, and has been shown to interact with HDAC11, SIRT2, and F-actin. HDAC6 is ubiquitinated, but its polyubiquitination however does not lead to degradation. HDAC is also a potential target of sumoylation.

# **HDAC6 Antibody (C-term) Blocking Peptide - References**

Hook, S.S., et al., Proc. Natl. Acad. Sci. U.S.A. 99(21):13425-13430 (2002).Grozinger, C.M., et al., Proc. Natl. Acad. Sci. U.S.A. 96(9):4868-4873 (1999).Wolffe, A.P., Nature 387(6628):16-17 (1997).Pazin, M.J., et al., Cell 89(3):325-328 (1997).Mahlknecht, U., et al., Cytogenet. Cell Genet. 93 (1-2), 135-136 (2001).