

UBE2N Antibody (N-term) Blocking peptide

Synthetic peptide Catalog # BP13846a

Specification

UBE2N Antibody (N-term) Blocking peptide - Product Information

Primary Accession

UBE2N Antibody (N-term) Blocking peptide - Additional Information

Gene ID 7334

Other Names

Ubiquitin-conjugating enzyme E2 N, Bendless-like ubiquitin-conjugating enzyme, Ubc13, UbcH13, Ubiquitin carrier protein N, Ubiquitin-protein ligase N, UBE2N, BLU

P61088

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP13846a was selected from the N-term region of UBE2N. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

UBE2N Antibody (N-term) Blocking peptide - Protein Information

Name UBE2N

Synonyms BLU

Function

The UBE2V1-UBE2N and UBE2V2-UBE2N heterodimers catalyze the synthesis of non-canonical 'Lys-63'-linked polyubiquitin chains. This type of polyubiquitination does not lead to protein degradation by the proteasome. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair pathway and contributes to the survival of cells after DNA damage. Acts together with the E3 ligases, HLTF and SHPRH, in the 'Lys-63'-linked poly- ubiquitination of PCNA upon genotoxic stress, which is required for DNA repair. Appears to act together with E3 ligase RNF5 in the 'Lys-63'- linked polyubiquitination of JKAMP thereby regulating JKAMP function by decreasing its association with components of the proteasome and ERAD. Promotes TRIM5 capsid-specific restriction activity and the UBE2V1- UBE2N heterodimer acts in concert with TRIM5 to generate

'Lys-63'- linked polyubiquitin chains which activate the MAP3K7/TAK1 complex which in turn results in the induction and expression of NF-kappa-B and MAPK-responsive inflammatory genes. Together with RNF135 and UB2V1, catalyzes the viral RNA-dependent 'Lys-63'-linked polyubiquitination of RIGI to activate the downstream signaling pathway that leads to interferon beta production (PubMed:28469175, PubMed:31006531). UBE2V1- UBE2N together with TRAF3IP2 E3 ubiquitin ligase mediate 'Lys-63'- linked polyubiquitination of TRAF6, a component of IL17A-mediated signaling pathway.

Cellular Location Nucleus. Cytoplasm

UBE2N Antibody (N-term) Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

UBE2N Antibody (N-term) Blocking peptide - Images

UBE2N Antibody (N-term) Blocking peptide - Background

The modification of proteins with ubiquitin is animportant cellular mechanism for targeting abnormal or short-livedproteins for degradation. Ubiquitination involves at least threeclasses of enzymes: ubiquitin-activating enzymes, or E1s, ubiquitin-conjugating enzymes, or E2s, and ubiquitin-proteinligases, or E3s. This gene encodes a member of the E2ubiquitin-conjugating enzyme family. Studies in mouse suggest thatthis protein plays a role in DNA postreplication repair. [providedby RefSeq].

UBE2N Antibody (N-term) Blocking peptide - References

Zhao, J., et al. BMC Med. Genet. 11, 96 (2010): Markson, G., et al. Genome Res. 19(10):1905-1911(2009) Topisirovic, I., et al. Proc. Natl. Acad. Sci. U.S.A. 106(31):12676-12681(2009) Yin, Q., et al. Nat. Struct. Mol. Biol. 16(6):658-666(2009) van Wijk, S.J., et al. Mol. Syst. Biol. 5, 295 (2009):