

KCNC2 Antibody (C-term) Blocking peptide

Synthetic peptide Catalog # BP13871b

Specification

KCNC2 Antibody (C-term) Blocking peptide - Product Information

Primary Accession

096PR1

KCNC2 Antibody (C-term) Blocking peptide - Additional Information

Gene ID 3747

Other Names

Potassium voltage-gated channel subfamily C member 2, Voltage-gated potassium channel Kv32, KCNC2

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP13871b was selected from the C-term region of KCNC2. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

KCNC2 Antibody (C-term) Blocking peptide - Protein Information

Name KCNC2 (HGNC:6234)

Function

Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Contributes to the regulation of the fast action potential repolarization and in sustained high-frequency firing in neurons of the central nervous system. Homotetramer channels mediate delayed-rectifier voltage-dependent potassium currents that activate rapidly at high- threshold voltages and inactivate slowly. Forms tetrameric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:15709110). Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNC1, and possibly other family members as well; channel properties depend on the type of alpha subunits that are part of the channel. Channel properties may be modulated either by the association with ancillary subunits, such as KCNE1,

KCNE2 or KCNE3 or indirectly by nitric oxide (NO) through a cGMP- and PKG-mediated signaling cascade, slowing channel activation and deactivation of delayed rectifier potassium channels (By similarity). Contributes to fire sustained trains of very brief action potentials at high frequency in retinal ganglion cells, thalamocortical and suprachiasmatic nucleus (SCN) neurons and in hippocampal and neocortical interneurons (PubMed:15709110). Sustained maximal action potential firing frequency in inhibitory hippocampal interneurons is negatively modulated by histamine H2 receptor activation in a cAMP- and protein kinase (PKA) phosphorylation- dependent manner. Plays a role in maintaining the fidelity of synaptic transmission in neocortical GABAergic interneurons by generating action potential (AP) repolarization at nerve terminals, thus reducing spike- evoked calcium influx and GABA neurotransmitter release. Required for long-range synchronization of gamma oscillations over distance in the neocortex. Contributes to the modulation of the circadian rhythm of spontaneous action potential firing in suprachiasmatic nucleus (SCN) neurons in a light-dependent manner (By similarity).

Cellular Location

Cell membrane; Multi-pass membrane protein. Membrane {ECO:0000250|UniProtKB:Q14B80}; Multi-pass membrane protein. Perikaryon {ECO:0000250|UniProtKB:Q14B80}. Cell projection, axon {ECO:0000250|UniProtKB:Q14B80}. Cell projection, dendrite {ECO:0000250|UniProtKB:Q14B80}. Postsynaptic cell membrane {ECO:0000250|UniProtKB:Q14B80}. Presynaptic cell membrane {ECO:0000250|UniProtKB:Q14B80}. Synapse, synaptosome {ECO:0000250|UniProtKB:P22462}. Synapse {ECO:0000250|UniProtKB:P22462} Apical cell membrane {ECO:0000250|UniProtKB:P22462}. Basolateral cell membrane {ECO:0000250|UniProtKB:P22462}. Note=Colocalizes with parvalbumin in globus pallidus neurons. Localizes in thalamocortical axons and synapses. Localizes on the surface of cell somata, proximal dendrites and axonal membranes. Also detected throughout the neuropil Localized in starburst cell somata and proximal dendrite processes Colocalized with GABA in presynaptic terminals. Clustered in patches in somatic and proximal dendritic membrane as well as in axons and presnypatic terminals of GABAergic interneurons; some of these patches are found near postsynaptic sites. {ECO:0000250|UniProtKB:P22462, ECO:0000250|UniProtKB:Q14B80}

KCNC2 Antibody (C-term) Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

KCNC2 Antibody (C-term) Blocking peptide - Images

KCNC2 Antibody (C-term) Blocking peptide - Background

The Shaker gene family of Drosophila encodes components ofvoltage-gated potassium channels and is comprised of foursubfamilies. Based on sequence similarity, this gene is similar toone of these subfamilies, namely the Shaw subfamily. The proteinencoded by this gene belongs to the delayed rectifier class of channel proteins and is an integral membrane protein that mediates the voltage-dependent potassium ion permeability of excitable membranes. Three transcript variants encoding three differentisoforms have been found for this gene.

KCNC2 Antibody (C-term) Blocking peptide - References

Wang, Z., et al. J. Gen. Physiol. 133(4):361-374(2009)Gutman, G.A., et al. Pharmacol. Rev. 57(4):473-508(2005)Haas, M., et al. Mamm. Genome 4(12):711-715(1993)