

IKKB Blocking Peptide (Center Y609) Synthetic peptide Catalog # BP20326c

Specification

IKKB Blocking Peptide (Center Y609) - Product Information

Primary Accession Other Accession <u>014920</u> <u>088351, 095KV0</u>

IKKB Blocking Peptide (Center Y609) - Additional Information

Gene ID 3551

Other Names

Inhibitor of nuclear factor kappa-B kinase subunit beta, I-kappa-B-kinase beta, IKK-B, IKK-beta, IkBKB, I-kappa-B kinase 2, IKK2, Nuclear factor NF-kappa-B inhibitor kinase beta, NFKBIKB, IKBKB, IKKB

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

IKKB Blocking Peptide (Center Y609) - Protein Information

Name IKBKB

Synonyms IKKB

Function

Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484, PubMed:30337470). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation (PubMed:9346484). Phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues (PubMed:9346484). PubMed:9346484). Phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues (PubMed:9346484). PubMed:20434986). PubMed:9346484). PubMed:9346484). Phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues (PubMed:20434986, PubMed:20434986, PubMed:20434986, PubMed:20434986, PubMed:20434986, PubMed:<

target="_blank">20797629, PubMed:21138416). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:9346484, PubMed:20434986, PubMed:20797629, PubMed:21138416). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:9346484, PubMed:20434986, PubMed:20797629, PubMed:21138416). In addition to the NF-kappa-B inhibitors, phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NF-kappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE (PubMed:11297557, PubMed:14673179, PubMed:20410276, PubMed:21138416). IKK-related kinase phosphorylations may prevent the overproduction of inflammatory mediators since they exert a negative regulation on canonical IKKs (PubMed:11297557, PubMed:20410276, PubMed:21138416). Phosphorylates FOXO3, mediating the TNF-dependent inactivation of this pro-apoptotic transcription factor (PubMed:15084260). Also phosphorylates other substrates including NAA10, NCOA3, BCL10 and IRS1 (PubMed: 19716809, PubMed:17213322). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF- mediated RIPK1-dependent cell death (By similarity). Phosphorylates the C-terminus of IRF5, stimulating IRF5 homodimerization and translocation into the nucleus (PubMed:25326418).

Cellular Location

Cytoplasm. Nucleus. Membrane raft. Note=Colocalized with DPP4 in membrane rafts.

Tissue Location

Highly expressed in heart, placenta, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis and peripheral blood

IKKB Blocking Peptide (Center Y609) - Protocols

Provided below are standard protocols that you may find useful for product applications.

<u>Blocking Peptides</u>

IKKB Blocking Peptide (Center Y609) - Images

IKKB Blocking Peptide (Center Y609) - Background

Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses. Acts as part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues. These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the

proteasome. In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis. In addition to the NF-kappa-B inhibitors, phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NF-kappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE. IKK-related kinase phosphorylations may prevent the overproduction of inflammatory mediators since they exert a negative regulation on canonical IKKs. Also phosphorylates other substrates including NCOA3, BCL10 and IRS1. Within the nucleus, acts as an adapter protein for NFKBIA degradation in UV-induced NF-kappa-B activation.