

R Csnk2a1 Blocking Peptide (N-term)

Synthetic peptide Catalog # BP20539a

Specification

R Csnk2a1 Blocking Peptide (N-term) - Product Information

Primary Accession P19139

Other Accession <u>P08181</u>, <u>P18334</u>, <u>Q8NEV1</u>, <u>O54833</u>, <u>P19784</u>,

P21869, P20427, P28020, P33674, Q60737,

P68400, P21868, P68399

R Csnk2a1 Blocking Peptide (N-term) - Additional Information

Gene ID 116549

Other Names

Casein kinase II subunit alpha, CK II alpha, Csnk2a1

Target/Specificity

The synthetic peptide sequence is selected from aa 38-50 of Rat Csnk2a1

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

R Csnk2a1 Blocking Peptide (N-term) - Protein Information

Name Csnk2a1

Function

Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine (By similarity). Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection (By similarity). May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response (By similarity). During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage (By similarity). Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation (By similarity). Phosphorylates a number of DNA repair proteins in response to DNA damage, such as MDC1, RAD9A, RAD51 and HTATSF1, promoting their recruitment to DNA damage sites (By similarity). Can also negatively regulate apoptosis (PubMed:12191471). Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3 (PubMed: 12191471). Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8 (PubMed: 12191471). Phosphorylates YY1, protecting YY1 from cleavage by CASP7 during apoptosis (By similarity). Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV (By similarity). Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, ATF4, SRF, MAX, JUN, FOS, MYC and MYB (By similarity). Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function (By similarity). Mediates sequential phosphorylation of FNIP1, promoting its gradual interaction with Hsp90, leading to activate both kinase and non-kinase client proteins of Hsp90 (By similarity). Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1 (By similarity). Acts as an ectokinase that phosphorylates several extracellular proteins (By similarity). Phosphorylates PML at 'Ser-565' and primes it for ubiquitin-mediated degradation (By similarity). Plays an important role in the circadian clock function by phosphorylating BMAL1 at 'Ser-90' which is pivotal for its interaction with CLOCK and which controls CLOCK nuclear entry (PubMed:19330005). Phosphorylates FMR1, promoting FMR1-dependent formation of a membraneless compartment (By similarity).

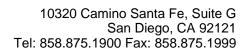
Cellular Location

Nucleus {ECO:0000250|UniProtKB:P68400}.

R Csnk2a1 Blocking Peptide (N-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides


R Csnk2a1 Blocking Peptide (N-term) - Images

R Csnk2a1 Blocking Peptide (N-term) - Background

Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage. Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation. Can also negatively regulate apoptosis. Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3. Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8. Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV. Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB. Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function. Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1. Acts as an ectokinase that phosphorylates several extracellular proteins.

R Csnk2a1 Blocking Peptide (N-term) - References

Ahmed K., et al. Cell. Mol. Biol. Res. 39:451-462(1993). Meisner H., et al. Biochemistry 28:4072-4076(1989).

Li P.F., et al. Mol. Cell 10:247-258(2002). Zhou W., et al. Chin. Sci. Bull. 54:220-226(2009).