

ERVK-7 Blocking Peptide (C-Term)

Synthetic peptide Catalog # BP22000b

Specification

ERVK-7 Blocking Peptide (C-Term) - Product Information

Primary Accession P61567

Other Accession <u>Q902F9</u>, <u>Q42043</u>, <u>Q71037</u>, <u>P61565</u>, <u>P61566</u>,

Q69384, Q902F8, Q9UKH3, P63135

ERVK-7 Blocking Peptide (C-Term) - Additional Information

Other Names

Endogenous retrovirus group K member 7 Env polyprotein, Envelope polyprotein, HERV-K(III) envelope protein, HERV-K102 envelope protein, HERV-K_1q22 provirus ancestral Env polyprotein, Surface protein, SU, Transmembrane protein, TM, ERVK-7

Target/Specificity

The synthetic peptide sequence is selected from aa 477-491 of HUMAN ERVK-7

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

ERVK-7 Blocking Peptide (C-Term) - Protein Information

Name ERVK-7

Function

Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. Endogenous envelope proteins may have kept, lost or modified their original function during evolution. TM anchors the envelope heterodimer to the viral membrane through one transmembrane domain. The other hydrophobic domain, called fusion peptide, mediates fusion of the viral membrane with the target cell membrane (By similarity).

Cellular Location

Virion.

Tissue Location

Expressed in lung, placenta, testis and peripheral blood lymphocytes.

ERVK-7 Blocking Peptide (C-Term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

ERVK-7 Blocking Peptide (C-Term) - Images

ERVK-7 Blocking Peptide (C-Term) - Background

Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. Endogenous envelope proteins may have kept, lost or modified their original function during evolution. TM anchors the envelope heterodimer to the viral membrane through one transmembrane domain. The other hydrophobic domain, called fusion peptide, mediates fusion of the viral membrane with the target cell membrane (By similarity).

ERVK-7 Blocking Peptide (C-Term) - References

Barbulescu M., et al. Curr. Biol. 9:861-868(1999). Sugimoto J., et al. Genomics 72:137-144(2001). Wang-Johanning F., et al. Oncogene 22:1528-1535(2003).