

SNURF Antibody (Center) Blocking Peptide

Synthetic peptide Catalog # BP2816c

Specification

SNURF Antibody (Center) Blocking Peptide - Product Information

Primary Accession

Q9Y675

SNURF Antibody (Center) Blocking Peptide - Additional Information

Gene ID 8926

Other Names

SNRPN upstream reading frame protein, SNURF

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP2816c was selected from the Center region of human SNURF. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

SNURF Antibody (Center) Blocking Peptide - Protein Information

Name SNURF

Cellular Location

Nucleus.

Tissue Location

Expressed in heart, skeletal muscle and lymphoblasts (at protein level). Expressed in brain, pancreas, heart, liver, lung, kidney and skeletal muscle.

SNURF Antibody (Center) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

SNURF Antibody (Center) Blocking Peptide - Images

SNURF Antibody (Center) Blocking Peptide - Background

SNURF is a highly basic protein localized to the nucleus. The evolutionarily constrained open reading frame of its gene is found on a bicistronic transcript which has a downstream ORF encoding the small nuclear ribonucleoprotein polypeptide N. The upstream coding region utilizes the first three exons of the transcript, a region that has been identified as an imprinting center. Multiple transcription initiation sites have been identified and extensive alternative splicing occurs in the 5' untranslated region but the full-length nature of these transcripts has not been determined. An alternate exon has been identified that substitutes for exon 4 and leads to a truncated, monocistronic transcript. Alternative splicing or deletion caused by a translocation event in the 5' UTR or coding region of this gene leads to Angelman syndrome or Prader-Willi syndrome due to parental imprint switch failure. The function of this protein is not yet known.

SNURF Antibody (Center) Blocking Peptide - References

Rodriguez-Jato, S., Nucleic Acids Res. 33 (15), 4740-4753 (2005) Runte, M., Hum. Genet. 114 (6), 553-561 (2004) Runte, M., Hum. Mol. Genet. 10 (23), 2687-2700 (2001)