

Phospho-PDPK1(S241) Antibody Blocking peptide

Synthetic peptide Catalog # BP3466a

Specification

Phospho-PDPK1(S241) Antibody Blocking peptide - Product Information

Primary Accession

015530

Phospho-PDPK1(S241) Antibody Blocking peptide - Additional Information

Gene ID 5170

Other Names

3-phosphoinositide-dependent protein kinase 1, hPDK1, PDPK1, PDK1

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP3466a was selected from the region of human Phospho-PDPK1-S241. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

Phospho-PDPK1(S241) Antibody Blocking peptide - Protein Information

Name PDPK1

Synonyms PDK1

Function

Serine/threonine kinase which acts as a master kinase, phosphorylating and activating a subgroup of the AGC family of protein kinases (PubMed:<a

 $href="http://www.uniprot.org/citations/10226025" target="_blank">10226025, PubMed: 10480933, PubMed: 10995762, PubMed: <a href="http://www.uniprot.org/citations/10995762" target="_blank"$

href="http://www.uniprot.org/citations/12167717" target="_blank">12167717, PubMed:14585963, PubMed:14604990, PubMed:16207722, PubMed:16251192, PubMed:<a


```
href="http://www.uniprot.org/citations/17327236" target=" blank">17327236</a>, PubMed:<a
href="http://www.uniprot.org/citations/17371830" target="blank">17371830</a>, PubMed:<a
href="http://www.uniprot.org/citations/18835241" target="_blank">18835241</a>, PubMed:<a
href="http://www.uniprot.org/citations/9094314" target="_blank">9094314</a>, PubMed:<a
href="http://www.uniprot.org/citations/9368760" target=" blank">9368760</a>, PubMed:<a
href="http://www.uniprot.org/citations/9445476" target=" blank">9445476</a>, PubMed:<a
href="http://www.uniprot.org/citations/9445477" target=" blank">9445477</a>, PubMed:<a
href="http://www.uniprot.org/citations/9707564" target="blank">9707564</a>, PubMed:<a
href="http://www.uniprot.org/citations/9768361" target="_blank">9768361</a>). Its targets
include: protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), p70 ribosomal protein S6 kinase
(RPS6KB1), p90 ribosomal protein S6 kinase (RPS6KA1, RPS6KA2 and RPS6KA3), cyclic
AMP-dependent protein kinase (PRKACA), protein kinase C (PRKCD and PRKCZ), serum and
glucocorticoid-inducible kinase (SGK1, SGK2 and SGK3), p21-activated kinase-1 (PAK1), TSSK3,
protein kinase PKN (PKN1 and PKN2) (PubMed:<a
href="http://www.uniprot.org/citations/10226025" target=" blank">10226025</a>, PubMed:<a
href="http://www.uniprot.org/citations/10480933" target="_blank">10480933</a>, PubMed:<a
href="http://www.uniprot.org/citations/10995762" target="_blank">10995762</a>, PubMed:<a
href="http://www.uniprot.org/citations/12167717" target="_blank">12167717</a>, PubMed:<a
href="http://www.uniprot.org/citations/14585963" target=" blank">14585963</a>, PubMed:<a
href="http://www.uniprot.org/citations/14604990" target="blank">14604990</a>, PubMed:<a
href="http://www.uniprot.org/citations/16207722" target="_blank">16207722</a>, PubMed:<a
href="http://www.uniprot.org/citations/16251192" target="blank">16251192</a>, PubMed:<a
href="http://www.uniprot.org/citations/17327236" target="blank">17327236</a>, PubMed:<a
href="http://www.uniprot.org/citations/17371830" target="_blank">17371830</a>, PubMed:<a
href="http://www.uniprot.org/citations/18835241" target="_blank">18835241</a>, PubMed:<a
href="http://www.uniprot.org/citations/9094314" target="_blank">9094314</a>, PubMed:<a
href="http://www.uniprot.org/citations/9368760" target="blank">9368760</a>, PubMed:<a
href="http://www.uniprot.org/citations/9445476" target="blank">9445476</a>, PubMed:<a
href="http://www.uniprot.org/citations/9707564" target="blank">9707564</a>, PubMed:<a
href="http://www.uniprot.org/citations/9768361" target="blank">9768361</a>). Plays a central
role in the transduction of signals from insulin by providing the activating phosphorylation to
PKB/AKT1, thus propagating the signal to downstream targets controlling cell proliferation and
survival, as well as glucose and amino acid uptake and storage (PubMed:<a
href="http://www.uniprot.org/citations/10226025" target=" blank">10226025</a>, PubMed:<a
href="http://www.uniprot.org/citations/12167717" target="blank">12167717</a>, PubMed:<a
href="http://www.uniprot.org/citations/9094314" target="blank">9094314</a>). Negatively
regulates the TGF-beta-induced signaling by: modulating the association of SMAD3 and SMAD7
with TGF-beta receptor, phosphorylating SMAD2, SMAD3, SMAD4 and SMAD7, preventing the
nuclear translocation of SMAD3 and SMAD4 and the translocation of SMAD7 from the nucleus to
the cytoplasm in response to TGF-beta (PubMed:<a
href="http://www.uniprot.org/citations/17327236" target=" blank">17327236</a>). Activates
PPARG transcriptional activity and promotes adipocyte differentiation (By similarity). Activates the
NF-kappa-B pathway via phosphorylation of IKKB (PubMed:<a
href="http://www.uniprot.org/citations/16207722" target=" blank">16207722</a>). The tyrosine
phosphorylated form is crucial for the regulation of focal adhesions by angiotensin II (PubMed: <a
href="http://www.uniprot.org/citations/14585963" target=" blank">14585963</a>). Controls
proliferation, survival, and growth of developing pancreatic cells (By similarity). Participates in the
regulation of Ca(2+) entry and Ca(2+)-activated K(+) channels of mast cells (By similarity).
Essential for the motility of vascular endothelial cells (ECs) and is involved in the regulation of their
chemotaxis (PubMed:<a href="http://www.uniprot.org/citations/17371830"
target=" blank">17371830</a>). Plays a critical role in cardiac homeostasis by serving as a dual
effector for cell survival and beta-adrenergic response (By similarity). Plays an important role
during thymocyte development by regulating the expression of key nutrient receptors on the
surface of pre-T cells and mediating Notch-induced cell growth and proliferative responses (By
similarity). Provides negative feedback inhibition to toll-like receptor-mediated NF-kappa-B
activation in macrophages (By similarity).
```


Cellular Location

Cytoplasm. Nucleus. Cell membrane; Peripheral membrane protein. Cell junction, focal adhesion. Note=Tyrosine phosphorylation seems to occur only at the cell membrane. Translocates to the cell membrane following insulin stimulation by a mechanism that involves binding to GRB14 and INSR. SRC and HSP90 promote its localization to the cell membrane. Its nuclear localization is dependent on its association with PTPN6 and its phosphorylation at Ser- 396. Restricted to the nucleus in neuronal cells while in non-neuronal cells it is found in the cytoplasm. The Ser-241 phosphorylated form is distributed along the perinuclear region in neuronal cells while in non-neuronal cells it is found in both the nucleus and the cytoplasm IGF1 transiently increases phosphorylation at Ser-241 of neuronal PDPK1, resulting in its translocation to other cellular compartments The tyrosine-phosphorylated form colocalizes with PTK2B in focal adhesions after angiotensin II stimulation

Tissue Location

Appears to be expressed ubiquitously. The Tyr-9 phosphorylated form is markedly increased in diseased tissue compared with normal tissue from lung, liver, colon and breast

Phospho-PDPK1(S241) Antibody Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

Phospho-PDPK1(S241) Antibody Blocking peptide - Images

Phospho-PDPK1(S241) Antibody Blocking peptide - Background

PDPK1 (3 Phosphoinositide Dependent Protein Kinase 1) phosphorylates AGC kinases. PDPK1 activates conventional PKC and PKC zeta through phosphorylation of critical threonine residues in the activation loop. PDPK1 also phosphorylates Protein Kinase B (PKB) at threonine 308 in the presence of phosphatidylinositol-3,4,5-trisphosphate. Active Akt inactivates Glycogen Synthase Kinase 3 (GSK3), eventually leading to the dephosphorylation and activation of glycogen synthase, and the stimulation of glycogen synthesis. Because of the role that PDPK1 plays in insulin-induced glycogen synthesis and PKC activation, it is a potentially important target for metabolic drug research.

Phospho-PDPK1(S241) Antibody Blocking peptide - References

Nilsen, T., et al., J. Biol. Chem. 279(6):4794-4801 (2004). Collins, B.J., et al., EMBO J. 22(16):4202-4211 (2003). Egawa, K., et al., J. Biol. Chem. 277(41):38863-38869 (2002). Sato, S., et al., J. Biol. Chem. 277(42):39360-39367 (2002). Scott, M.T., et al., EMBO J. 21(24):6771-6780 (2002).