DJ-1 Antibody (N-term) Blocking peptide Synthetic peptide Catalog # BP6407a ## **Specification** # DJ-1 Antibody (N-term) Blocking peptide - Product Information **Primary Accession** Q99497 # DJ-1 Antibody (N-term) Blocking peptide - Additional Information **Gene ID** 11315 #### **Other Names** Protein DJ-1, 34--, Oncogene DJ1, Parkinson disease protein 7, PARK7 ### Target/Specificity The synthetic peptide sequence used to generate the antibody AP6407a was selected from the DJ-1 region of human Park7 (DJ-1). A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay. #### **Format** Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed. #### Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. #### **Precautions** This product is for research use only. Not for use in diagnostic or therapeutic procedures. # DJ-1 Antibody (N-term) Blocking peptide - Protein Information # Name PARK7 (HGNC:16369) #### **Function** Multifunctional protein with controversial molecular function which plays an important role in cell protection against oxidative stress and cell death acting as oxidative stress sensor and redox-sensitive chaperone and protease (PubMed:17015834, PubMed:20304780, PubMed:18711745, PubMed:12796482, PubMed:19229105, PubMed:25416785, PubMed:26995087, PubMed:28993701, href="http://www.uniprot.or signaling pathway as well as cell growth and transformation through, for instance, the modulation of NF-kappa-B signaling pathway (PubMed: 12612053, PubMed:15502874, PubMed:14749723, PubMed:17015834, PubMed:21097510, PubMed:18711745). Has been described as a protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals (PubMed: <a $href="http://www.uniprot.org/citations/25416785"\ target="_blank">25416785, PubMed:<a$ href="http://www.uniprot.org/citations/28596309" target="blank">28596309). But this function is rebuted by other works (PubMed:27903648, PubMed:31653696). As a protein deglycase, repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Acts on early glycation intermediates (hemithioacetals and aminocarbinols), preventing the formation of advanced glycation endproducts (AGE) that cause irreversible damage (PubMed: 25416785, PubMed:28013050, PubMed:26995087). Also functions as a nucleotide deglycase able to repair glycated guanine in the free nucleotide pool (GTP, GDP, GMP, dGTP) and in DNA and RNA. Is thus involved in a major nucleotide repair system named quanine glycation repair (GG repair), dedicated to reversing methylglyoxal and glyoxal damage via nucleotide sanitization and direct nucleic acid repair (PubMed: 28596309). Protects histones from adduction by methylglyoxal, controls the levels of methylglyoxal- derived argininine modifications on chromatin (PubMed: 30150385). Able to remove the glycations and restore histone 3, histone glycation disrupts both local and global chromatin architecture by altering histone-DNA interactions as well as histone acetylation and ubiquitination levels (PubMed: 30150385, PubMed:30894531). Displays a very low glyoxalase activity that may reflect its deglycase activity (PubMed: 22523093, PubMed:31653696, PubMed:28993701). Eliminates hydrogen peroxide and protects cells against hydrogen peroxide-induced cell death (PubMed:16390825). Required for correct mitochondrial morphology and function as well as for autophagy of dysfunctional mitochondria (PubMed: 19229105, PubMed:16632486). Plays a role in regulating expression or stability of the mitochondrial uncoupling proteins SLC25A14 and SLC25A27 in dopaminergic neurons of the substantia nigra pars compacta and attenuates the oxidative stress induced by calcium entry into the neurons via L-type channels during pacemaking (PubMed: 18711745). Regulates astrocyte inflammatory responses, may modulate lipid rafts-dependent endocytosis in astrocytes and neuronal cells (PubMed: 23847046). In pancreatic islets, involved in the maintenance of mitochondrial reactive oxygen species (ROS) levels and glucose homeostasis in an age- and diet dependent manner. Protects pancreatic beta cells from cell death induced by inflammatory and cytotoxic setting (By similarity). Binds to a number of mRNAs containing multiple copies of GG or CC motifs and partially inhibits their translation but dissociates following oxidative stress (PubMed:18626009). Metal-binding protein able to bind copper as well as toxic mercury ions, enhances the cell protection mechanism against induced metal toxicity (PubMed:23792957). In macrophages, interacts with the NADPH oxidase subunit NCF1 to direct NADPH oxidase-dependent ROS production, and protects against sepsis (By similarity). #### **Cellular Location** Cell membrane {ECO:0000250|UniProtKB:Q99LX0}; Lipid-anchor {ECO:0000250|UniProtKB:Q99LX0}. Cytoplasm. Nucleus. Membrane raft {ECO:0000250|UniProtKB:088767}. Mitochondrion. Endoplasmic reticulum. Note=Under normal conditions, located predominantly in the cytoplasm and, to a lesser extent, in the nucleus and mitochondrion. Translocates to the mitochondrion and subsequently to the nucleus in response to oxidative stress and exerts an increased cytoprotective effect against oxidative damage (PubMed:18711745). Detected in tau inclusions in brains from neurodegenerative disease patients (PubMed:14705119). Membrane raft localization in astrocytes and neuronal cells requires palmitoylation #### **Tissue Location** Highly expressed in pancreas, kidney, skeletal muscle, liver, testis and heart. Detected at slightly lower levels in placenta and brain (at protein level). Detected in astrocytes, Sertoli cells, spermatogonia, spermatids and spermatozoa. Expressed by pancreatic islets at higher levels than surrounding exocrine tissues (PubMed:22611253). ## DJ-1 Antibody (N-term) Blocking peptide - Protocols Provided below are standard protocols that you may find useful for product applications. ### Blocking Peptides DJ-1 Antibody (N-term) Blocking peptide - Images # DJ-1 Antibody (N-term) Blocking peptide - Background Park 7 acts as positive regulator of androgen receptor-dependent transcription, and may function as redox-sensitive chaperone and as sensor for oxidative stress, as well as preventing aggregation of SNCA. This protein has been shown to protect neurons against oxidative stress and cell death. and to play a role in fertilization. Park7 is detected in tau inclusions in brains from neurodegenerative disease patients, and is generally highly expressed in pancreas, kidney, skeletal muscle, liver, testis and heart, with detectable levels in placenta, brain, astrocytes, Sertoli cells, spermatogonia, spermatids and spermatozoa. Defects in Park7 are the cause of autosomal recessive early-onset Parkinson disease 7 (PARK7), a form of Parkinson disease characterized by onset before 40 years, slow progression and initial good response to levodopa. # DJ-1 Antibody (N-term) Blocking peptide - References Kim, R.H., et al., Cancer Cell 7(3):263-273 (2005). Shinbo, Y., et al., Int. J. Oncol. 26(3):641-648 (2005). Takahashi-Niki, K., et al., Biochem. Biophys. Res. Commun. 320(2):389-397 (2004). Hering, R., et al., Hum. Mutat. 24(4):321-329 (2004).Maraganore, D.M., et al., Neurology 63(3):550-553 (2004).