

Ku70 Antibody (N-term) Blocking Peptide
Synthetic peptide
Catalog # BP6775a**Specification****Ku70 Antibody (N-term) Blocking Peptide - Product Information**Primary Accession [P12956](#)**Ku70 Antibody (N-term) Blocking Peptide - Additional Information****Gene ID** 2547**Other Names**

X-ray repair cross-complementing protein 6, 364-, 4299-, 5'-deoxyribose-5-phosphate lyase Ku70, 5'-dRP lyase Ku70, 70 kDa subunit of Ku antigen, ATP-dependent DNA helicase 2 subunit 1, ATP-dependent DNA helicase II 70 kDa subunit, CTC box-binding factor 75 kDa subunit, CTC75, CTCBF, DNA repair protein XRCC6, Lupus Ku autoantigen protein p70, Ku70, Thyroid-lupus autoantigen, TLAA, X-ray repair complementing defective repair in Chinese hamster cells 6, XRCC6, G22P1

Target/Specificity

The synthetic peptide sequence used to generate the antibody [AP6775a](#) was selected from the N-term region of human Ku70. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

Ku70 Antibody (N-term) Blocking Peptide - Protein Information**Name** XRCC6 ([HGNC:4055](#))**Synonyms** G22P1**Function**

DNA-binding protein critical for the DNA damage response, specifically in repairing double-strand breaks (DSBs) via the classical non-homologous end joining (NHEJ) pathway. It forms a heterodimer with XRCC5 (Ku80), creating the Ku70:Ku80 heterodimer (Ku complex), which serves as a DNA end-binding complex. It primarily binds DSBs and recruits essential repair factors, assembling the core long-range NHEJ complex to facilitate the alignment and ligation of broken

DNA ends (PubMed:11493912, PubMed:20493174, PubMed:33854234, PubMed:34352203, PubMed:9742108). This pathway ensures the rapid repair of cytotoxic and mutagenic DSBs and contributes to the generation of diversity in T-cell receptors and antibodies through mechanisms such as V(D)J recombination (PubMed:9742108). Likely acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), catalyzing the beta-elimination of the 5'-deoxyribose- 5-phosphate at abasic sites near DSBs. This activity cleans the termini of abasic sites, a common form of nucleotide damage, preparing broken ends for ligation (PubMed:20383123). It may also possess 3'-5' DNA helicase activity, although this has not been confirmed in vivo, and its physiological significance remains unclear (PubMed:7957065). Beyond DNA repair, the protein contributes to telomere maintenance (PubMed:29490055). It is also implicated in transcriptional regulation, acting as a cofactor for various transcription factors (PubMed:12145306, PubMed:8621488). It plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP- RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Can also bind RNAs and recruits PRKDC to a wide range of cellular RNAs, including the U3 small nucleolar RNA, playing a role in the biogenesis of ribosomal RNAs (PubMed:32103174). Additionally, it negatively regulates apoptosis by interacting with BAX, sequestering it from the mitochondria, and may possess deubiquitination activity targeting BAX (PubMed:15023334, PubMed:18362350, PubMed:35545041).

Cellular Location

Nucleus. Chromosome. Cytoplasm. Note=When trimethylated, localizes in the cytoplasm.

Ku70 Antibody (N-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Blocking Peptides](#)

Ku70 Antibody (N-term) Blocking Peptide - Images

Ku70 Antibody (N-term) Blocking Peptide - Background

Ku70 is a single stranded DNA-dependent ATP-dependent helicase. It has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3'-5' direction. Binding to DNA may be mediated by p70. It is involved in DNA nonhomologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. The Ku p70/p86 dimer acts as regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold. The Ku p70/p86 dimer is probably involved in stabilizing broken DNA ends and bringing them together.

Ku70 Antibody (N-term) Blocking Peptide - References

Beskow,C., et.al., Br. J. Cancer 101 (5), 816-821 (2009)Tseng,R.C., et.al., Cancer 115 (13), 2939-2948 (2009)