

ALAD Antibody (C-term) Blocking Peptide
Synthetic peptide
Catalog # BP6828b

Specification

ALAD Antibody (C-term) Blocking Peptide - Product Information

Primary Accession [P13716](#)

ALAD Antibody (C-term) Blocking Peptide - Additional Information

Gene ID 210

Other Names

Delta-aminolevulinic acid dehydratase, ALADH, Porphobilinogen synthase, ALAD

Target/Specificity

The synthetic peptide sequence used to generate the antibody [AP6828b](#) was selected from the C-term region of human ALAD. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

ALAD Antibody (C-term) Blocking Peptide - Protein Information

Name ALAD

Function

Catalyzes an early step in the biosynthesis of tetrapyrroles. Binds two molecules of 5-aminolevulinate per subunit, each at a distinct site, and catalyzes their condensation to form porphobilinogen.

Cellular Location

Cytoplasm, cytosol {ECO:0000250|UniProtKB:P10518}

ALAD Antibody (C-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Blocking Peptides](#)

ALAD Antibody (C-term) Blocking Peptide - Images**ALAD Antibody (C-term) Blocking Peptide - Background**

The ALAD enzyme is composed of 8 identical subunits and catalyzes the condensation of 2 molecules of delta-aminolevulinate to form porphobilinogen (a precursor of heme, cytochromes and other hemoproteins). ALAD catalyzes the second step in the porphyrin and heme biosynthetic pathway; zinc is essential for enzymatic activity. ALAD enzymatic activity is inhibited by lead and a defect in the ALAD structural gene can cause increased sensitivity to lead poisoning and acute hepatic porphyria.

ALAD Antibody (C-term) Blocking Peptide - References

Guey,L.T., et.al., Eur. Urol. (2009)