RIPK3 Antibody (N-term) Blocking Peptide Synthetic peptide Catalog # BP7184a ### **Specification** ### RIPK3 Antibody (N-term) Blocking Peptide - Product Information Primary Accession **Q9Y572** # RIPK3 Antibody (N-term) Blocking Peptide - Additional Information **Gene ID** 11035 #### **Other Names** Receptor-interacting serine/threonine-protein kinase 3, RIP-like protein kinase 3, Receptor-interacting protein 3, RIP-3, RIPK3, RIP3 ### Target/Specificity The synthetic peptide sequence used to generate the antibody AP7184a was selected from the -term region of human RIPK3 N-term (-term). A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay. #### **Format** Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed. #### Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. #### **Precautions** This product is for research use only. Not for use in diagnostic or therapeutic procedures. ### RIPK3 Antibody (N-term) Blocking Peptide - Protein Information #### Name RIPK3 (HGNC:10021) ### **Function** Serine/threonine-protein kinase that activates necroptosis and apoptosis, two parallel forms of cell death (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414 target="_blank">22265414, PubMed:22421439, PubMed:29883609, PubMed:32657447). Necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members, is triggered by RIPK3 following activation by ZBP1 (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed: 29883609, PubMed:32298652). Activated RIPK3 forms a necrosis- inducing complex and mediates phosphorylation of MLKL, promoting MLKL localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage (PubMed: 19524512, PubMed:19524512, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:25316792, PubMed:29883609). In addition to TNF- induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Also regulates apoptosis: apoptosis depends on RIPK1, FADD and CASP8, and is independent of MLKL and RIPK3 kinase activity (By similarity). Phosphorylates RIPK1: RIPK1 and RIPK3 undergo reciprocal autoand trans-phosphorylation (PubMed: 19524513). In some cell types, also able to restrict viral replication by promoting cell death- independent responses (By similarity). In response to Zika virus infection in neurons, promotes a cell death-independent pathway that restricts viral replication: together with ZBP1, promotes a death- independent transcriptional program that modifies the cellular metabolism via up-regulation expression of the enzyme ACOD1/IRG1 and production of the metabolite itaconate (By similarity). Itaconate inhibits the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes (By similarity). RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL (PubMed: 19498109). These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production (PubMed:19498109). #### **Cellular Location** Cytoplasm, cytosol. Nucleus {ECO:0000250|UniProtKB:Q9QZL0}. Note=Mainly cytoplasmic Present in the nucleus in response to influenza A virus (IAV) infection. {ECO:0000250|UniProtKB:Q9QZL0} #### **Tissue Location** Highly expressed in the pancreas. Detected at lower levels in heart, placenta, lung and kidney ### RIPK3 Antibody (N-term) Blocking Peptide - Protocols Provided below are standard protocols that you may find useful for product applications. ## Blocking Peptides RIPK3 Antibody (N-term) Blocking Peptide - Images # RIPK3 Antibody (N-term) Blocking Peptide - Background The product of this gene is a member of the receptor-interacting protein (RIP) family of serine/threonine protein kinases, and contains a C-terminal domain unique from other RIP family Tel: 858.875.1900 Fax: 858.875.1999 members. The encoded protein is predominantly localized to the cytoplasm, and can undergo nucleocytoplasmic shuttling dependent on novel nuclear localization and export signals. It is a component of the tumor necrosis factor (TNF) receptor-I signaling complex, and can induce apoptosis and weakly activate the NF-kappaB transcription factor. # RIPK3 Antibody (N-term) Blocking Peptide - References Yu P.W., Huang B.C.B., Shen M., Quast J., Chan E., Xu X., Nolan G.P., Payan D.G., Luo Y. Curr. Biol. 9:539-542(1999).Sun X., Lee J., Navas T., Baldwin D.T., Stewart T.A., Dixit V.M.; J. Biol. Chem. 274:16871-16875(1999).