CAMK2A (CAMK2 alpha) Antibody (C-term) Blocking peptide Synthetic peptide Catalog # BP7206b # **Specification** # CAMK2A (CAMK2 alpha) Antibody (C-term) Blocking peptide - Product Information **Primary Accession** Q9UQM7 # CAMK2A (CAMK2 alpha) Antibody (C-term) Blocking peptide - Additional Information Gene ID 815 #### **Other Names** Calcium/calmodulin-dependent protein kinase type II subunit alpha, CaM kinase II subunit alpha, CaMK-II subunit alpha, CAMK2A, CAMKA, KIAA0968 # **Target/Specificity** The synthetic peptide sequence used to generate the antibody AP7206b was selected from the C-term region of human CAMK2 alpha . A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay. ### **Format** Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed. #### Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. #### **Precautions** This product is for research use only. Not for use in diagnostic or therapeutic procedures. ### CAMK2A (CAMK2 alpha) Antibody (C-term) Blocking peptide - Protein Information Name CAMK2A Synonyms CAMKA, KIAA0968 ### **Function** Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in various processes, such as synaptic plasticity, neurotransmitter release and long-term potentiation (PubMed:14722083). Member of the NMDAR signaling complex in excitatory synapses, it regulates NMDAR-dependent potentiation of the AMPAR and therefore excitatory synaptic transmission (By similarity). Regulates dendritic spine development (PubMed:28130356). Also regulates the migration of developing neurons (PubMed:29100089). Phosphorylates the transcription factor FOXO3 to activate its transcriptional activity (PubMed:23805378). Phosphorylates the transcription factor ETS1 in response to calcium signaling, thereby decreasing ETS1 affinity for DNA (By similarity). In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK- STAT signaling pathway (PubMed:11972023). In response to interferon- beta (IFN-beta) stimulation, stimulates the JAK-STAT signaling pathway (PubMed:35568036). Acts as a negative regulator of 2- arachidonoylglycerol (2-AG)-mediated synaptic signaling via modulation of DAGLA activity (By similarity). ### **Cellular Location** Synapse {ECO:0000250|UniProtKB:P11275}. Postsynaptic density {ECO:0000250|UniProtKB:P11275}. Cell projection, dendritic spine. Cell projection, dendrite. Note=Postsynaptic lipid rafts {ECO:0000250|UniProtKB:P11275} ## CAMK2A (CAMK2 alpha) Antibody (C-term) Blocking peptide - Protocols Provided below are standard protocols that you may find useful for product applications. ### Blocking Peptides CAMK2A (CAMK2 alpha) Antibody (C-term) Blocking peptide - Images # CAMK2A (CAMK2 alpha) Antibody (C-term) Blocking peptide - Background CaM-kinase II (CAMK2) is a prominent Ser/Thr protein kinase in the central nervous system that may function in long-term potentiation and neurotransmitter release. Likely autophosphorylation of Thr-286 allows the kinase to switch from a calmodulin-dependent to a calmodulin-independent state. CAMK2 is composed of four different chains: alpha, beta, gamma, and delta. The different isoforms assemble into homo- or heteromultimeric holoenzymes composed of 8 to 12 subunits. ## CAMK2A (CAMK2 alpha) Antibody (C-term) Blocking peptide - References Blume-Jensen P, et al. Nature 2001. 411: 355.Cantrell D, J. Cell Sci. 2001. 114: 1439.Jhiang S Oncogene 2000. 19: 5590.Manning G, et al. Science 2002. 298: 1912.Moller, D, et al. Am. J. Physiol. 1994. 266: C351-C359.Robertson, S. et al. Trends Genet. 2000. 16: 368.Robinson D, et al. Oncogene 2000. 19: 5548.Van der Ven, P, et al. Hum. Molec. Genet. 1993. 2: 1889.Vanhaesebroeck, B, et al. Biochem. J. 2000. 346: 561.Van Weering D, et al. Recent Results Cancer Res. 1998. 154: 271.