

CDK2 Antibody (T14) Blocking Peptide

Synthetic peptide Catalog # BP7518d

Specification

CDK2 Antibody (T14) Blocking Peptide - Product Information

Primary Accession

P24941

CDK2 Antibody (T14) Blocking Peptide - Additional Information

Gene ID 1017

Other Names

Cyclin-dependent kinase 2, Cell division protein kinase 2, p33 protein kinase, CDK2, CDKN2

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP7518d was selected from the T14 region of human CDK2. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

CDK2 Antibody (T14) Blocking Peptide - Protein Information

Name CDK2

Synonyms CDKN2

Function

Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis (PubMed:10499802, PubMed:10884347, PubMed:10995386, PubMed:10995387, PubMed:11051553, PubMed:1113184, PubMed:12944431, PubMed:15800615, PubMed:<a href="http://www.uniprot.org/citations/17495531"


```
target=" blank">17495531</a>, PubMed:<a href="http://www.uniprot.org/citations/19966300"
target="blank">19966300</a>, PubMed:<a href="http://www.uniprot.org/citations/20935635"
target="blank">20935635</a>, PubMed:<a href="http://www.uniprot.org/citations/21262353"
target="_blank">21262353</a>, PubMed:<a href="http://www.uniprot.org/citations/21596315"
target="blank">21596315</a>, PubMed:<a href="http://www.uniprot.org/citations/28216226"
target=" blank">28216226</a>, PubMed:<a href="http://www.uniprot.org/citations/28666995"
target=" blank">28666995</a>). Phosphorylates CABLES1, CTNNB1, CDK2AP2, ERCC6, NBN,
USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2 (PubMed:<a
href="http://www.uniprot.org/citations/10499802" target=" blank">10499802</a>, PubMed:<a
href="http://www.uniprot.org/citations/10995386" target="_blank">10995386</a>, PubMed:<a href="http://www.uniprot.org/citations/10995387" target="_blank">10995387</a>, PubMed:<a
href="http://www.uniprot.org/citations/11051553" target="blank">11051553</a>, PubMed:<a
href="http://www.uniprot.org/citations/11113184" target="blank">11113184</a>, PubMed:<a
href="http://www.uniprot.org/citations/12944431" target="blank">12944431</a>, PubMed:<a
href="http://www.uniprot.org/citations/15800615" target="_blank">15800615</a>, PubMed:<a
href="http://www.uniprot.org/citations/19966300" target="blank">19966300</a>, PubMed:<a
href="http://www.uniprot.org/citations/20935635" target="_blank">20935635</a>, PubMed:<a
href="http://www.uniprot.org/citations/21262353" target="_blank">21262353</a>, PubMed:<a
href="http://www.uniprot.org/citations/21596315" target="blank">21596315</a>, PubMed:<a
href="http://www.uniprot.org/citations/28216226" target=" blank">28216226</a>). Triggers
duplication of centrosomes and DNA (PubMed: <a
href="http://www.uniprot.org/citations/11051553" target=" blank">11051553</a>). Acts at the
G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis,
and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the
subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of
cyclin B/CDK1 at the centrosome and in the nucleus (PubMed: <a
href="http://www.uniprot.org/citations/18372919" target=" blank">18372919</a>, PubMed:<a
href="http://www.uniprot.org/citations/19238148" target="_blank">19238148</a>, PubMed:<a
href="http://www.uniprot.org/citations/19561645" target=" blank">19561645</a>). Crucial role
in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in
embryonic stem cells (ESCs) (PubMed: <a href="http://www.uniprot.org/citations/18372919"
target=" blank">18372919</a>, PubMed:<a href="http://www.uniprot.org/citations/19238148"
target="blank">19238148</a>, PubMed:<a href="http://www.uniprot.org/citations/19561645"
target="blank">19561645</a>). Activity of CDK2 is maximal during S phase and G2; activated
by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and
subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA
replication to drive the transition from S phase to mitosis, the G2 phase (PubMed: <a
href="http://www.uniprot.org/citations/18372919" target=" blank">18372919</a>, PubMed:<a
href="http://www.uniprot.org/citations/19238148"\ target="\_blank">19238148</a>, PubMed:<a https://www.uniprot.org/citations/19238148" target="_blank">19238148</a>, PubMed:<a https://www.uniprot.org/citations/19238148
href="http://www.uniprot.org/citations/19561645" target="_blank">19561645</a>). EZH2
phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing (PubMed: <a
href="http://www.uniprot.org/citations/20935635" target=" blank">20935635</a>). Cyclin
E/CDK2 prevents oxidative stress- mediated Ras-induced senescence by phosphorylating MYC
(PubMed:<a href="http://www.uniprot.org/citations/19966300" target=" blank">19966300</a>).
Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from
initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating
BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells
progress towards mitosis (PubMed: <a href="http://www.uniprot.org/citations/15800615"
target=" blank">15800615</a>, PubMed:<a href="http://www.uniprot.org/citations/20195506"
target=" blank">20195506</a>, PubMed:<a href="http://www.uniprot.org/citations/21319273"
target=" blank">21319273</a>). In response to DNA damage, double- strand break repair by
homologous recombination a reduction of CDK2- mediated BRCA2 phosphorylation (PubMed: <a
href="http://www.uniprot.org/citations/15800615" target="_blank">15800615</a>). Involved in
regulation of telomere repair by mediating phosphorylation of NBN (PubMed:<a
href="http://www.uniprot.org/citations/28216226" target=" blank">28216226</a>).
Phosphorylation of RB1 disturbs its interaction with E2F1 (PubMed:<a
href="http://www.uniprot.org/citations/10499802" target="_blank">10499802</a>). NPM1
```


phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication (PubMed: 11051553). Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase (PubMed: 10995386, PubMed:10995387). Required for vitamin D-mediated growth inhibition by being itself inactivated (PubMed: 20147522). Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner (PubMed:20079829). USP37 is activated by phosphorylation and thus triggers G1-S transition (PubMed: 21596315). CTNNB1 phosphorylation regulates insulin internalization (PubMed:21262353). Phosphorylates FOXP3 and negatively regulates its transcriptional activity and protein stability (By similarity). Phosphorylates ERCC6 which is essential for its chromatin remodeling activity at DNA double-strand breaks (PubMed:29203878). Acts as a regulator of the phosphatidylinositol 3- kinase/protein kinase B signal transduction by mediating phosphorylation of the C-terminus of protein kinase B (PKB/AKT1 and PKB/AKT2), promoting its activation (PubMed:<a

Cellular Location

Cytoplasm, cytoskeleton, microtubule organizing center, centrosome. Nucleus, Cajal body. Cytoplasm. Endosome Note=Localized at the centrosomes in late G2 phase after separation of the centrosomes but before the start of prophase. Nuclear-cytoplasmic trafficking is mediated during the inhibition by 1,25-(OH)(2)D(3)

CDK2 Antibody (T14) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

href="http://www.uniprot.org/citations/24670654" target=" blank">24670654).

• Blocking Peptides

CDK2 Antibody (T14) Blocking Peptide - Images

CDK2 Antibody (T14) Blocking Peptide - Background

CDK2 is a member of the Ser/Thr protein kinase family. This protein kinase is highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2. It is a catalytic subunit of the cyclin-dependent protein kinase complex, whose activity is restricted to the G1-S phase, and essential for cell cycle G1/S phase transition. This protein associates with and is regulated by the regulatory subunits of the complex including cyclin A or E, CDK inhibitor p21Cip1 (CDKN1A) and p27Kip1 (CDKN1B). Its activity is also regulated by its protein phosphorylation.

CDK2 Antibody (T14) Blocking Peptide - References

Moshinsky, D.J., et al., Biochem. Biophys. Res. Commun. 310(3):1026-1031 (2003).Chow, J.P., et al., J. Biol. Chem. 278(42):40815-40828 (2003).O'Nions, J., et al., Oncogene 22(46):7181-7191 (2003).Yun, J., et al., J. Biol. Chem. 278(38):36966-36972 (2003).Izumiya, Y., et al., J. Virol. 77(17):9652-9661 (2003).