

STEP / PTPN5 Antibody (N-Term) Blocking peptide

Synthetic peptide Catalog # BP8430a

Specification

STEP / PTPN5 Antibody (N-Term) Blocking peptide - Product Information

Primary Accession

P54829

STEP / PTPN5 Antibody (N-Term) Blocking peptide - Additional Information

Gene ID 84867

Other Names

Tyrosine-protein phosphatase non-receptor type 5, Neural-specific protein-tyrosine phosphatase, Striatum-enriched protein-tyrosine phosphatase, STEP, PTPN5

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP8430a was selected from the N-term region of human STEP . A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

STEP / PTPN5 Antibody (N-Term) Blocking peptide - Protein Information

Name PTPN5

Function

May regulate the activity of several effector molecules involved in synaptic plasticity and neuronal cell survival, including MAPKs, Src family kinases and NMDA receptors.

Cellular Location

Endoplasmic reticulum membrane; Multi-pass membrane protein

STEP / PTPN5 Antibody (N-Term) Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

STEP / PTPN5 Antibody (N-Term) Blocking peptide - Images

STEP / PTPN5 Antibody (N-Term) Blocking peptide - Background

STEP (striatum-enriched phosphatase) is a neural-specific protein-tyrosine phosphatase, first isolated from the rat brain. The 537-amino acid predicted human protein as isolated from cDNA sequences is between 85 and 90% identical to the mouse and rat sequences. In rat neuronal cell cultures, glutamate-mediated activation of N-methyl-D-aspartate (NMDA) receptors leads to the rapid but transient phosphorylation of extracellular signal-related kinase-2 (ERK2). NMDA-mediated influx of calcium, activates the calcium-dependent phosphatase calcineurin and the resulting dephosphorylation and activation of STEP. STEP then inactivatea ERK2 through tyrosine dephosphorylation and blocks translocation of the kinase to the nucleus. STEP plays a significant role in regulating the ERK activation and downstream signaling in neurons.

STEP / PTPN5 Antibody (N-Term) Blocking peptide - References

Ota, T., et al., Nat. Genet. 36(1):40-45 (2004).Li, X., et al., Genomics 28(3):442-449 (1995).