

DUSP14 Antibody (N-term) Blocking Peptide

Synthetic peptide Catalog # BP8456a

Specification

DUSP14 Antibody (N-term) Blocking Peptide - Product Information

Primary Accession

095147

DUSP14 Antibody (N-term) Blocking Peptide - Additional Information

Gene ID 11072

Other Names

Dual specificity protein phosphatase 14, MKP-1-like protein tyrosine phosphatase, MKP-L, Mitogen-activated protein kinase phosphatase 6, MAP kinase phosphatase 6, MKP-6, DUSP14, MKP6

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP8456a was selected from the N-term region of human DUSP14. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

DUSP14 Antibody (N-term) Blocking Peptide - Protein Information

Name DUSP14

Synonyms MKP6

Function

Involved in the inactivation of MAP kinases. Dephosphorylates ERK, JNK and p38 MAP-kinases. Plays a negative role in TCR signaling by dephosphorylating MAP3K7 adapter TAB1 leading to its inactivation (PubMed:24403530).

DUSP14 Antibody (N-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

DUSP14 Antibody (N-term) Blocking Peptide - Images

DUSP14 Antibody (N-term) Blocking Peptide - Background

DUSP14 is involved in the inactivation of MAP kinases. This protein dephosphorylates ERK, JNK and p38 MAP-kinases. In addition to antigen recognition by the T-cell receptor, T-cell activation requires a second signal from a costimulatory receptor, such as CD28, which interacts with B7-1 and B7-2 ligands on antigen-presenting cells. CD28 costimulation induces transcription of interleukin-2 and stabilizes newly synthesized IL2 through the activation of mitogen-activated protein kinases (MAPKs), such as ERK and JNK, and the subsequent creation of AP1 transcription factor. DUSP14 is a negative regulator of CD28 signaling.

DUSP14 Antibody (N-term) Blocking Peptide - References

Marti, F., et al., J. Immunol. 166(1):197-206 (2001).