

PP2A alpha Antibody (N-term) Blocking peptide

Synthetic peptide Catalog # BP8462a

Specification

PP2A alpha Antibody (N-term) Blocking peptide - Product Information

Primary Accession

P67775

PP2A alpha Antibody (N-term) Blocking peptide - Additional Information

Gene ID 5515

Other Names

Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform, PP2A-alpha, Replication protein C, RP-C, PPP2CA

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP8462a was selected from the N-term region of human PPP2CA/B. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

PP2A alpha Antibody (N-term) Blocking peptide - Protein Information

Name PPP2CA

Function

Catalytic subunit of protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of a wide variety of enzymes, signal transduction pathways, and cellular events (PubMed:10801873, PubMed:12473674, PubMed:17245430, PubMed:22613722, PubMed:33243860, PubMed:34004147, PubMed:9920888, PubMed:9920888, PubMed:22613722, PubMed:2261

modulate the activity of phosphorylase B kinase casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase (PubMed:22613722). Cooperates with SGO2 to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I (By similarity). Can dephosphorylate various proteins, such as SV40 large T antigen, AXIN1, p53/TP53, PIM3, WEE1 (PubMed:10801873, PubMed:10801873, PubMed:17245430, PubMed:9920888). Activates RAF1 by dephosphorylating it at 'Ser-259' (PubMed:108018731

href="http://www.uniprot.org/citations/10801873" target="_blank">10801873). Mediates dephosphorylation of WEE1, preventing its ubiquitin-mediated proteolysis, increasing WEE1 protein levels, and promoting the G2/M checkpoint (PubMed:33108758). Mediates dephosphorylation of MYC; promoting its ubiquitin-mediated proteolysis: interaction with AMBRA1 enhances interaction between PPP2CA and MYC (PubMed:25438055). Mediates dephosphorylation of FOXO3; promoting its stabilization: interaction with AMBRA1 enhances interaction between PPP2CA and FOXO3 (PubMed:30513302). Catalyzes dephosphorylation of the pyrin domain of NLRP3, promoting assembly of the NLRP3 inflammasome (By similarity). Together with RACK1 adapter, mediates dephosphorylation of AKT1 at 'Ser-473', preventing AKT1 activation and AKT-mTOR signaling pathway (By similarity). Dephosphorylation of AKT1 is essential for regulatory T-cells (Treg) homeostasis and stability (By similarity). Catalyzes dephosphorylation of PIM3, promotinh PIM3 ubiquitination and proteasomal degradation (PubMed:12473674). Part of the striatin- interacting phosphatase and kinase (STRIPAK) complexes (PubMed: 33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:33633399). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:33633399). Key mediator of a quality checkpoint during transcription elongation as part of the Integrator-PP2A (INTAC) complex (PubMed: 33243860, PubMed:34004147, PubMed:37080207). The INTAC complex drives premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: within the INTAC complex, PPP2CA catalyzes dephosphorylation of the C-terminal domain (CTD) of Pol II subunit

Cellular Location

Cytoplasm. Nucleus. Chromosome. Chromosome, centromere. Cytoplasm, cytoskeleton, spindle pole. Note=In prometaphase cells, but not in anaphase cells, localizes at centromeres (PubMed:16541025). During mitosis, also found at spindle poles (PubMed:16541025). Centromeric localization requires the presence of SGO2 (By similarity). Recruited to chromatin and transcription pause-release checkpoint via its association with the Integrator complex (PubMed:33243860, PubMed:34004147). {ECO:0000250|UniProtKB:P63330, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:34004147}

 $POLR2A/RPB1 \ and \ SUPT5H/SPT5, thereby preventing transcriptional elongation (PubMed:<ahref="http://www.uniprot.org/citations/33243860" target="_blank">33243860, PubMed:<ahref="http://www.uniprot.org/citations/34004147" target="_blank">34004147, PubMed:<ahref="http://www.uniprot.org/citations/4404147" target="_blank">34004147, PubMed:<ahref="http://www.uniprot.org/$

href="http://www.uniprot.org/citations/37080207" target="blank">37080207).

PP2A alpha Antibody (N-term) Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

PP2A alpha Antibody (N-term) Blocking peptide - Images

PP2A alpha Antibody (N-term) Blocking peptide - Background

PPP2CA/B represents the phosphatase 2A catalytic subunit. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits.

PP2A alpha Antibody (N-term) Blocking peptide - References

Gergs, U., et al., J. Biol. Chem. 279(39):40827-40834 (2004).Prickett, T.D., et al., J. Biol. Chem. 279(37):38912-38920 (2004).Scott, G.K., et al., EMBO J. 22(23):6234-6244 (2003).Rao, R.K., et al., Biochem. Biophys. Res. Commun. 293(1):610-616 (2002).Avdi, N.J., et al., J. Biol. Chem. 277(43):40687-40696 (2002).