SHP2 Antibody (Y546) Blocking peptide Synthetic peptide Catalog # BP8471e ## **Specification** # SHP2 Antibody (Y546) Blocking peptide - Product Information **Primary Accession** Q06124 Other Accession NP 002825 ## SHP2 Antibody (Y546) Blocking peptide - Additional Information #### **Gene ID 5781** #### **Other Names** Tyrosine-protein phosphatase non-receptor type 11, Protein-tyrosine phosphatase 1D, PTP-1D, Protein-tyrosine phosphatase 2C, PTP-2C, SH-PTP2, SHP-2, Shp2, SH-PTP3, PTPN11, PTP2C, SHPTP2 #### Target/Specificity The synthetic peptide sequence used to generate the antibody AP8471e was selected from the region of human Phospho-SHP2-Y546. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay. #### **Format** Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed. Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. #### **Precautions** This product is for research use only. Not for use in diagnostic or therapeutic procedures. # SHP2 Antibody (Y546) Blocking peptide - Protein Information ## Name PTPN11 Synonyms PTP2C, SHPTP2 #### **Function** Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus (PubMed:10655584, PubMed:18559669, PubMed:<a $href="http://www.uniprot.org/citations/18829466" target="_blank">18829466, PubMed:26742426, PubMed:$ href="http://www.uniprot.org/citations/28074573" target="_blank">28074573). Positively regulates MAPK signal transduction pathway (PubMed: 28074573). Dephosphorylates GAB1, ARHGAP35 and EGFR (PubMed:28074573). Dephosphorylates ROCK2 at 'Tyr-722' resulting in stimulation of its RhoA binding activity (PubMed:18559669). Dephosphorylates CDC73 (PubMed:26742426). Dephosphorylates SOX9 on tyrosine residues, leading to inactivate SOX9 and promote ossification (By similarity). Dephosphorylates tyrosine-phosphorylated NEDD9/CAS-L (PubMed:19275884). **Cellular Location** Cytoplasm. Nucleus #### **Tissue Location** Widely expressed, with highest levels in heart, brain, and skeletal muscle. ## SHP2 Antibody (Y546) Blocking peptide - Protocols Provided below are standard protocols that you may find useful for product applications. ### • Blocking Peptides SHP2 Antibody (Y546) Blocking peptide - Images # SHP2 Antibody (Y546) Blocking peptide - Background SHP2, also known as PTPN11, is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains two tandem Src homology-2 domains, which function as phospho-tyrosine binding domains and mediate the interaction of this PTP with its substrates. This PTP is widely expressed in most tissues and plays a regulatory role in various cell signaling events that are important for a diversity of cell functions, such as mitogenic activation, metabolic control, transcription regulation, and cell migration. Mutations in the gene are a cause of Noonan syndrome as well as acute myeloid leukemia. ## SHP2 Antibody (Y546) Blocking peptide - References Chan, R.J., et al., Blood 105(9):3737-3742 (2005).Sturla, L.M., et al., J. Biol. Chem. 280(15):14597-14604 (2005).Loh, M.L., et al., Leuk. Res. 29(4):459-462 (2005).Wang, Q., et al., J. Biol. Chem. 280(9):8397-8406 (2005).Niihori, T., et al., J. Hum. Genet. 50(4):192-202 (2005).