

FAS Antibody (Center) Blocking Peptide
Synthetic peptide
Catalog # BP8530c

Specification

FAS Antibody (Center) Blocking Peptide - Product Information

Primary Accession [P25445](#)

FAS Antibody (Center) Blocking Peptide - Additional Information

Gene ID 355

Other Names

Tumor necrosis factor receptor superfamily member 6, Apo-1 antigen, Apoptosis-mediating surface antigen FAS, FASLG receptor, CD95, FAS, APT1, FAS1, TNFRSF6

Target/Specificity

The synthetic peptide sequence used to generate the antibody [AP8530c](#) was selected from the Center region of human FAS. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

FAS Antibody (Center) Blocking Peptide - Protein Information

Name FAS

Synonyms APT1, FAS1, TNFRSF6

Function

Receptor for TNFSF6/FASLG. The adapter molecule FADD recruits caspase CASP8 to the activated receptor. The resulting death-inducing signaling complex (DISC) performs CASP8 proteolytic activation which initiates the subsequent cascade of caspases (aspartate-specific cysteine proteases) mediating apoptosis. FAS-mediated apoptosis may have a role in the induction of peripheral tolerance, in the antigen- stimulated suicide of mature T-cells, or both. The secreted isoforms 2 to 6 block apoptosis (in vitro).

Cellular Location

[Isoform 1]: Cell membrane; Single-pass type I membrane protein. Membrane raft [Isoform 3]:

Secreted. [Isoform 5]: Secreted.

Tissue Location

Isoform 1 and isoform 6 are expressed at equal levels in resting peripheral blood mononuclear cells. After activation there is an increase in isoform 1 and decrease in the levels of isoform 6.

FAS Antibody (Center) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Blocking Peptides](#)

FAS Antibody (Center) Blocking Peptide - Images**FAS Antibody (Center) Blocking Peptide - Background**

FAS is a member of the TNF-receptor superfamily. This receptor contains a death domain. It has been shown to play a central role in the physiological regulation of programmed cell death, and has been implicated in the pathogenesis of various malignancies and diseases of the immune system. The interaction of this receptor with its ligand allows the formation of a death-inducing signaling complex that includes Fas-associated death domain protein (FADD), caspase 8, and caspase 10. The autoproteolytic processing of the caspases in the complex triggers a downstream caspase cascade, and leads to apoptosis. This receptor has been also shown to activate NF-kappaB, MAPK3/ERK1, and MAPK8/JNK, and is found to be involved in transducing the proliferating signals in normal diploid fibroblast and T cells.

FAS Antibody (Center) Blocking Peptide - References

Feig,C., et.al., EMBO J. 26 (1), 221-231 (2007) Jenkins,M., et.al., J. Biol. Chem. 275 (11), 7988-7993 (2000)