

ACADSB Antibody (C-term) Blocking Peptide
Synthetic peptide
Catalog # BP8537b**Specification****ACADSB Antibody (C-term) Blocking Peptide - Product Information**Primary Accession [P45954](#)**ACADSB Antibody (C-term) Blocking Peptide - Additional Information****Gene ID 36****Other Names**

Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial, SBCAD, 2-methyl branched chain acyl-CoA dehydrogenase, 2-MEBCAD, 2-methylbutyryl-coenzyme A dehydrogenase, 2-methylbutyryl-CoA dehydrogenase, ACADSB

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP8537b was selected from the C-term region of human ACADSB. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

ACADSB Antibody (C-term) Blocking Peptide - Protein Information**Name** ACADSB ([HGNC:91](#))**Function**

Short and branched chain specific acyl-CoA dehydrogenase that catalyzes the proR-proR stereospecific alpha,beta-dehydrogenation of fatty acyl-CoA thioesters using the electron transfer flavoprotein (ETF) as their physiologic electron acceptor, resulting in the formation of trans-2-enoyl-CoA ((2E)-enoyl-CoA) (PubMed:10832746, PubMed:11013134, PubMed:21430231, PubMed:7698750). Among the different mitochondrial acyl-CoA dehydrogenases, acts specifically on short and branched chain acyl-CoA derivatives such as (S)-2-methylbutyryl-CoA as well as short straight chain acyl-CoAs such as butyryl-CoA (butanoyl- CoA) (PubMed:>10832746, PubMed:>11013134, PubMed:>21430231, PubMed:>7698750). Plays an important role in the metabolism of L- isoleucine by catalyzing the dehydrogenation of 2-methylbutyryl-CoA, one of the steps of the L-isoleucine catabolic pathway (PubMed:>10832746, PubMed:>11013134). Can also act on valproyl-CoA, a metabolite of valproic acid, an antiepileptic drug (PubMed:>8660691).

Cellular Location

Mitochondrion matrix

Tissue Location

Ubiquitously expressed, with highest levels in heart, muscle and liver.

ACADSB Antibody (C-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Blocking Peptides](#)

ACADSB Antibody (C-term) Blocking Peptide - Images**ACADSB Antibody (C-term) Blocking Peptide - Background**

ACADSB has greatest activity toward short branched chain acyl-CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2-methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. This protein can use valproyl-CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent.

ACADSB Antibody (C-term) Blocking Peptide - References

Saenger,A.K., et.al., Biochemistry 44 (49), 16043-16053 (2005)