

BHMT2 Antibody (N-term) Blocking Peptide
Synthetic peptide
Catalog # BP8762a**Specification****BHMT2 Antibody (N-term) Blocking Peptide - Product Information**

Primary Accession [Q9H2M3](#)

BHMT2 Antibody (N-term) Blocking Peptide - Additional Information

Gene ID 23743

Other Names

S-methylmethionine--homocysteine S-methyltransferase BHMT2, SMM-hcy methyltransferase, Betaine--homocysteine S-methyltransferase 2, BHMT2

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP8762a was selected from the N-term region of human BHMT2. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

BHMT2 Antibody (N-term) Blocking Peptide - Protein Information

Name BHMT2

Function

Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor.

Tissue Location

Expressed in liver and kidney and at reduced levels in the brain, heart, and skeletal muscle

BHMT2 Antibody (N-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Blocking Peptides](#)

BHMT2 Antibody (N-term) Blocking Peptide - Images**BHMT2 Antibody (N-term) Blocking Peptide - Background**

BHMT2 is involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline (By similarity).

BHMT2 Antibody (N-term) Blocking Peptide - References

Chadwick L.H., et.al., Genomics 70:66-73(2000).