

ACCN2 Antibody (C-term) Blocking Peptide

Synthetic peptide Catalog # BP9270b

Specification

ACCN2 Antibody (C-term) Blocking Peptide - Product Information

Primary Accession

P78348

ACCN2 Antibody (C-term) Blocking Peptide - Additional Information

Gene ID 41

Other Names

Acid-sensing ion channel 1, ASIC1, Amiloride-sensitive cation channel 2, neuronal, Brain sodium channel 2, BNaC2, ASIC1, ACCN2, BNAC2

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP9270b was selected from the C-term region of human ACCN2. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

ACCN2 Antibody (C-term) Blocking Peptide - Protein Information

Name ASIC1 (HGNC:100)

Function

Forms voltage-independent, pH-gated trimeric sodium channels that act as postsynaptic excitatory receptors in the nervous system, playing a crucial role in regulating synaptic plasticity, learning, and memory (PubMed:21036899, PubMed:32915133, PubMed:34319232). Upon extracellular pH drop this channel elicits transient, fast

activating, and completely desensitizing inward currents (PubMed:21036899). Displays high selectivity for sodium ions but can also permit the permeation of other cations (PubMed:<a href="http://www.uniprot.org/citations/21036890" target="http://www.uniprot.org/citations/21036890" target="http://www.uniprot.org/citations/21036899" target="http://www.uniprot.org/citations/21036899" target="http://www.uniprot.org/citations/21036899" target="http://www.uniprot.org/citations/21036899" target="http://www.uniprot.org/citations/21036899" target="http://www.uniprot.org/citations/21036899" target="http://www.uniprot.org/citations/21036899" target="ht

href="http://www.uniprot.org/citations/21036899" target="_blank">21036899). Regulates more or less directly intracellular calcium concentration and CaMKII phosphorylation, and thereby

the density of dendritic spines. Modulates neuronal activity in the circuits underlying innate fear (By similarity).

Cellular Location

Cell membrane; Multi-pass membrane protein Postsynaptic cell membrane {ECO:0000250|UniProtKB:Q6NXK8}. Cell projection, dendrite {ECO:0000250|UniProtKB:Q6NXK8}. Note=Isolated in synaptosomes from the dendritic synapses of neurons {ECO:0000250|UniProtKB:Q6NXK8}

Tissue Location

Expressed in neurons throughout the central and peripheral nervous system.

ACCN2 Antibody (C-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

ACCN2 Antibody (C-term) Blocking Peptide - Images

ACCN2 Antibody (C-term) Blocking Peptide - Background

ACCN2 encodes a member of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily. The members of this family are amiloride-sensitive sodium channels that contain intracellular N and C termini, 2 hydrophobic transmembrane regions, and a large extracellular loop, which has many cysteine residues with conserved spacing. The member is expressed in most if not all brain neurons, and it may be an ion channel subunit; however, its function as an ion channel remains unknown.

ACCN2 Antibody (C-term) Blocking Peptide - References

Sherwood, T., et.al, J. Biol. Chem. 284 (41), 27899-27907 (2009) Kapoor, N., et.al, J. Biol. Chem. 284 (36), 24526-24541 (2009) Samways, D.S., et.al., Cell Calcium 45 (4), 319-325 (2009)