

Caspase-3, mouse recombinant protein Caspase 3 Catalog # PBV10028r

Specification

Caspase-3, mouse recombinant protein - Product info

Primary Accession Calculated MW

<u>Q8BNT4</u> of large (17 kD) and small (11 kD) subunits KDa

Caspase-3, mouse recombinant protein - Additional Info

Gene ID12367Gene SymbolCASP3Other NamesCaspase-3, Short name=CASP-3, Apopain, Cysteine protease CPP32, Short name=CPP-32, FLICE,
Protein Yama, SREBP cleavage activity 1, Short name=SCA-1

Gene Source	Mouse
Source	E. coli
Assay&Purity	SDS-PAGE;
Assay2&Purity2	HPLC;
Recombinant	Yes
Target/Specificity	
Caspase-3	

Application Notes Reconstitute to 1 unit per μ l in PBS containing 15% glycerol

Format Lyophilized powder

Storage -70°C; Lyophilized powder

Caspase-3, mouse recombinant protein - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- <u>Blocking Peptides</u>
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Caspase-3, mouse recombinant protein - Images

Caspase-3, mouse recombinant protein - Background

Caspase-3 (also know as CPP32, Yama and apopain) is a major member of the caspase-family of cysteine proteases. Caspase-3 exists in cells as an inactive 32 kDa proenzyme. During apoptosis procaspase-3 is processed at aspartate residues by self-proteolysis and/or cleavage by upstream caspases, such as caspase-6 (Mch2), caspase-8 (Flice) and grazyme B. The processed form of caspase-3 consists of large (17 kD) and small (11 kD) subunits which associate to form the active enzyme. The active caspase-3 has been shown involving in the proteolysis of several important molecules, such as poly (ADP-ribose) polymerase (PARP), the sterol regulatory element binding proteins (SREBPs), focal adhesion kinase (FAK), and others. The recombinant active human caspase-3 expressed in E. coli spontaneously undergoes autoprocessing to yield subunits characteristic of the native enzyme. The active caspase-3 preferentially cleaves caspase-3 substrates (e.g., DEVD-AFC or DEVD-pNA) and is routinely tested at BioVision for its ability to enzymatically cleave these two substrates Ac-DEVD-pNA or Ac-DEVD-AFC