

TFP1/HADHA Blocking Peptide

Catalog # PBV10341b

Specification

TFP1/HADHA Blocking Peptide - Product Information

Primary Accession	<u>P40939</u>
Gene ID	3030
Calculated MW	83000

TFP1/HADHA Blocking Peptide - Additional Information

Gene ID 3030

Application & Usage

The peptide is used for blocking the antibody activity of TFP1. It usually blocks the antibody activity completely in Western blot analysis by incubating the peptide with equal volume of antibody for 30-60 minutes at 37°C.

Other Names

Trifunctional enzyme subunit alpha, mitochondrial, 78 kDa gastrin-binding protein, TP-alpha, Long-chain enoyl-CoA hydratase, 4.2.1.17, Long chain 3-hydroxyacyl-CoA dehydrogenase, 1.1.1.211, HADHA, HADH

Target/Specificity TFP1

Formulation 50 μ g (0.5 mg/ml) in phosphate buffered saline (PBS), pH 7.2, containing 50% glycerol, 1% BSA and 0.02% thimerosal.

Reconstitution & Storage -20 °C

Background Descriptions

Precautions

TFP1/HADHA Blocking Peptide is for research use only and not for use in diagnostic or therapeutic procedures.

TFP1/HADHA Blocking Peptide - Protein Information

Name HADHA

Synonyms HADH

Function

Mitochondrial trifunctional enzyme catalyzes the last three of the four reactions of the mitochondrial beta-oxidation pathway (PubMed:1550553, PubMed:29915090, PubMed:30850536, PubMed:8135828, PubMed:31604922). The mitochondrial beta-oxidation pathway is the major energy-producing process in tissues and is performed through four consecutive reactions breaking down fatty acids into acetyl-CoA (PubMed:29915090). Among the enzymes involved in this pathway, the trifunctional enzyme exhibits specificity for long-chain fatty acids (PubMed:30850536, PubMed:31604922). Mitochondrial trifunctional enzyme is a heterotetrameric complex composed of two proteins, the trifunctional enzyme subunit alpha/HADHA described here carries the 2,3-enoyl-CoA hydratase and the 3-hydroxyacyl-CoA dehydrogenase activities while the trifunctional enzyme subunit beta/HADHB bears the 3-ketoacyl-CoA thiolase activity (PubMed:29915090, PubMed:30850536, PubMed:8135828). Independently of subunit beta, HADHA also exhibits a cardiolipin acyltransferase activity that participates in cardiolipin remodeling; cardiolipin is a major mitochondrial membrane phospholipid (PubMed: 23152787, PubMed:31604922). HADHA may act downstream of Tafazzin/TAZ, that remodels monolysocardiolipin (MLCL) to a cardiolipin intermediate, and then HADHA may continue to remodel this species into mature tetralinoleoyl-cardiolipin (PubMed:31604922). Has also been proposed to act directly on MLCL; capable of acylating MLCL using different acyl-CoA substrates, with highest activity for oleoyl-CoA (PubMed:23152787).

Cellular Location

Mitochondrion. Mitochondrion inner membrane Note=Protein stability and association with mitochondrion inner membrane do not require HADHB.

TFP1/HADHA Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

TFP1/HADHA Blocking Peptide - Images