

p38alpha, Active recombinant protein

p38, mitogen-activated protein kinase 14 Catalog # PBV11331r

Specification

p38alpha, Active recombinant protein - Product info

Primary Accession	<u>Q16539</u>
Concentration	0.1
Calculated MW	67.0 kDa KDa

p38alpha, Active recombinant protein - Additional Info

Gene ID Gene Symbol Other Names p38, mitogen-activated protein kinase 14	1432 MAPK14
Source	Baculovirus (Sf9 insect cells)
Assay&Purity	SDS-PAGE; ≥90%
Assay2&Purity2	HPLC;
Recombinant	Yes

Storage

Format Liquid

-80°C; Recombinant proteins in storage buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, 25% glycerol).

p38alpha, Active recombinant protein - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

p38alpha, Active recombinant protein - Images

p38alpha, Active recombinant protein - Background

p38a (SAPK2A) is a member of the p38 MAPK family which are activated by various environmental stresses and proinflammatory cytokines (1). The activation of p38 requires its phosphorylation by MAP kinase kinases (MKKs), or its autophosphorylation triggered by the interaction of MAP3K7IP1/TAB1 protein with this kinase (2). The substrates of p38 include transcription regulator

ATF2, MEF2C, and MAX, cell cycle regulator CDC25B, and tumor suppressor p53, which suggest the roles of this kinase in stress related transcription and cell cycle regulation, as well as in genotoxic stress response (5).