Interactive Cell Cycle Control: G1/S Checkpoint Pathway
Cell cycle arrest provides time crucial for repair of DNA damage, preserving genomic integrity. Growth arrest activates through checkpoint pathways that delay cell cycle progression. The balance between cell differentiation and proliferation is regulated transcriptionally; in the cell cycle the G1 to S-phase transition is the primary control point. Only prior to this can cells be directed to differentiation, otherwise they progress to the proliferative cycle autonomously.






Foundational characteristics of cancer include proliferation, angiogenesis, migration, evasion of apoptosis, and cellular immortality. Find key markers for these cellular processes and antibodies to detect them.
The SUMOplot™ Analysis Program predicts and scores sumoylation sites in your protein. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle.
The Autophagy Receptor Motif Plotter predicts and scores autophagy receptor binding sites in your protein. Identifying proteins connected to this pathway is critical to understanding the role of autophagy in physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection, and cancer.